

cERLとERLプロジェクト

坂中章悟

高エネルギー加速器研究機構 加速器研究施設

ERL評価専門委員会, 2010年4月22日, KEK

ERL Collaboration Team

High Energy Accelerator Research Organization (KEK)

M. Akemoto, T. Aoto, D. Arakawa, S. Asaoka, A. Enomoto, S. Fukuda, K. Furukawa, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, T. Honma, T. Honma, K. Hosoyama, M. Isawa, E. Kako, T. Kasuga, H. Katagiri, H. Kawata, Y. Kobayashi, Y. Kojima, T. Matsumoto, H. Matsushita, S. Michizono, T. Mitsuhashi, T. Miura, T. Miyajima, H. Miyauchi, S. Nagahashi, H. Nakai, H. Nakajima, E. Nakamura, K. Nakanishi, K. Nakao, T. Nogami, S. Noguchi, S. Nozawa, T. Obina, S. Ohsawa, T. Ozaki, C. Pak, H. Sakai, S. Sakanaka, H. Sasaki, Y. Sato, K. Satoh, M. Satoh, T. Shidara, M. Shimada, T. Shioya, T. Shishido, T. Suwada, T. Takahashi, R. Takai, T. Takenaka, Y. Tanimoto, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, K. Watanabe, M. Yamamoto, Y. Yamamoto, S. Yamamoto, Y. Yano, M. Yoshida

Japan Atomic Energy Agency (JAEA)

R. Hajima, R. Nagai, N. Nishimori, M. Sawamura

Institute for Solid State Physics (ISSP), University of Tokyo N. Nakamura, I. Ito, H. Kudoh, T. Shibuya, K. Shinoe, H. Takaki

Hiroshima University

- M. Kuriki, H. lijima, S. Matsuba
- Ē.

Nagoya University

Y. Takeda, T. Nakanishi, M. Kuwahara, T. Ujihara, M. Okumi

National Institute of Advanced Industrial Science and Technology (AIST)

D. Yoshitomi, K. Torizuka

JASRI/SPring-8 H. Hanaki

ERLプロジェクトの概要 コンパクトERL (cERL) 計画 まとめ

1. ERLプロジェクトの概要

ERLを用いる新型放射光源

最先端の加速器技術

- ・ 高輝度フォトカソード電子銃
- 高勾配·超伝導加速空洞

+

Energy Recovery Linac (ERL) のコンセプト

放射光源としての魅力

- 回折限界X線光源:
 ε_{x,y} = 10 100 pm·rad
 - I = 10 100 mA
- 超短パルスX線光源 (繰り返し周波数を任意に可変) _α < 100 fs rms

 $T_{\rm rep} = 0.8 \ {\rm ns} \sim \infty$

共振器型X線自由電子レーザ(X-FELO)
 Fully-coherent CW X-ray laser

cf. K.-J. Kim et al., PRL 100, 244802 (2008).

 $\varepsilon < \frac{\lambda}{-}$

 4π

リニアックFELで要求される高品質なビームを、CW運転で供給可能.

- ・極めて小さな横方向エミッタンス、縦方向 エミッタンスを同時に実現可能
- ・ 高繰り返しにより、ビームの大電流化

KEKにおける5-GeV ERL計画

Parameters of the ERL

	Parameter
Beam energy	5 GeV
Average current	10 - 100 mA
Normalized emittance	0.1 - 1 mm·mrad
Energy spread (rms)	(0.5 - 2) ×10 ⁻⁴
Bunch length (rms)	1 - 3 ps (usual mode) ~ 100 fs (bunch compression)
RF frequency	1.3 GHz

Parameters of the light sources

	Parameter
Spectral range	30 eV - 30 keV
Average brilliance from insertion devices	10 ²¹ - 10 ²³ ph/s/mm²/mrad²/0.1%bw
Average flux	> 10 ¹⁶ phs/s/0.1%bw
Number of ID's	20 - 30

ERLの運転モードの例

		Short Pulses							
	High coherence (HC) mode	gh coherence High flux (HF) Ultimate mode C) mode mode (in future)							
Beam energy									
Beam current	10 mA	100 mA	100 mA	77 μA ¹⁾					
Charge/bunch	7.7 pC	77 pC	77 pC	77 pC					
Bunch repetition rate	1.3 GHz	1.3 GHz	1.3 GHz	1 MHz ¹⁾					
Beam emittance at 5 GeV ($\varepsilon_x = \varepsilon_y$)	10 pm rad	100 pm rad	10 pm⋅rad	100 pm rad					
Beam energy spread (rms)	2×10 ⁻⁴	2×10 ⁻⁴	2×10 ⁻⁴	3.4×10 ⁻³					
Bunch length (rms)	2 ps	2 ps	2 ps	100 fs					

1) flexible

平均輝度

High coherence mode

High flux mode

I = 10 mA, $\varepsilon_{x,v}$ = 10 pm·rad, L_u = 30 m I = 100 mA, $\varepsilon_{x,v}$ = 100 pm·rad, L_u = 30 m

平均輝度: ultimate mode

I = 100 mA, $\varepsilon_{x,y}$ = 10 pm·rad

30 m undulator

X-ray FEL Oscillator (X-FELO)の可能性

R. Hajima and N. Nishimori (JAEA), Proc. FEL2008, pp. 87-89.

Comparison of SASE-FEL and X-FELO

X-ray FEL Oscillator (X-FELO) のシミュレーション

R. Hajima and N. Nishimori (JAEA), Proc. FEL2008, pp. 87-89.

異なる放射光源の比較

	ERL	X-FELO	3 rd -SR	SASE FEL
Beam energy (GeV)	5	7	6 - 8	15 - 25
Average Brilliance <i>B</i> (photons/s/mm ² /mrad ² /0.1%bw)	10 ²¹ - 10 ²³	10 ²⁶ - 10 ²⁸	10 ²⁰ - 10 ²¹	10 ²² - 10 ²⁴
Peak brilliance \hat{B} (photons/s/mm ² /mrad ² /0.1%bw)	10 ²³ - 10 ²⁵	10 ³³	~ 10 ²²	~ 10 ³³
Repetition rate f_{rep} (Hz)	1.3×10 ⁹	10 ⁶ - 10 ⁸	5×10 ⁸	10 ² - 10 ⁴
Coherent fraction	0.52 - 20%	100%	0.1%	100%
Bunch length (ps)	2 - 0.1	1 ps	~ 20 ps	0.1
Number of beamlines	20 - 30	Few	~ 30	Few
Typical undulator parameters	λ _u = 1.6 cm K = 1.27 L=30 m	λ _u = 1.88 cm K = 1.414 L=56 m	λ _u = 3.2 cm K = 1.03 L=25 m	λ _u = 3 cm K = 3.9 L=100 m
Typical 1st harmonic ϵ_{1st} (keV)	8.2	12	12.4	8.3

Spectral Brightness

原図は次の資料より引用: R. Hettel, "Performance Metrics of Future Light Sources", FLS2010, SLAC, March 1, 2010.

ERLとXFEL-Oの両立の可能性

Possible scheme for compatibility of 2-loop ERL and XFEL-O

Bunch train and pulsed bump for hybrid operation

RF半波長分の軌道バンプを入れることで、2ループERLを2つのモードで運転可能 - 5-GeV ERL(2回加速、2回減速)

- 7.5-GeV recirculating linac (3回加速)→ XFEL-O

2. コンパクトERL計画

ERLの主要な要素のR&Dが進行中

コンパクトERLで技術の総合的な実証

大規模なERLを建設する前に、ERLで用いられる先端的技術を総合的に実証 ビーム物理上の隠れた問題点等がないか研究

Parameters of the Compact ERI												
	Parameters											
Beam energy	35 - 245 MeV											
Injection energy	5 MeV											
Average current	<mark>10</mark> - 100 mA											
Acc. gradient (main linac)	15 MV/m											
Normalized emittance	0.1 - 1 mm⋅mrad											
Bunch length (rms)	1 - 3 ps (usual) ~ 100 fs (with B.C.)											
RF frequency	1.3 GHz											

コンパクトERLのレイアウト(2ループの場合)

cERLのレイアウト(側面図)

cERLの将来のアップグレード・シナリオ

- 1. 1ループERL: 35 MeV, 10 mA (or lower)
 - ・主リニアック:9セル空洞×2台
 - ・入射器: 2セル空洞×3台(入射 5 MeV)
- 2. コミッショニング、試験運転
 - ・加速器のスタディ
 - ・十分立ち上がった時点で、利用実験も可能:
 - ・Compton backscatteringを用いた超短パルスX線源
 - ・CSRを用いる大強度テラヘルツ光源
- 3. エネルギーアップ: 65 MeV
 - ・主リニアックに9セル×2台入りモジュールを追加
- 4. 2ループ化: 125 MeV
- 5. エネルギーアップ: 245 MeV
 - ・9セル×4台入りモジュールを追加

E > 100 MeV におけるFELの可能性も今後検討したい

コンパクトERLのビーム力学上のポイント

0.70

if using dummy loops. Dummy inner loop 🦲 Dummy outer loop

cERL 入射部の設計

- Injector components of cERL
 - Photocathode DC gun
 - Two solenoids
 - Bunching cavity (Buncher)
 - Three SC cavities
 - Five quadrupole magnets
 - Merger (using three bending magnets)
- Initial Conditions
 - Electron distribution on cathode: beer-can shape
 - Initial charge: 80 pC

- Parameters optimization
 - Generic algorithm
 - Tracking code GPT
 - Space charge effects included
 - No CSR in merger
- Optimization result
 - Rectangular type gives smaller emittance than the sector type.
 - Normalized emittance 0.4 0.5 mm mrad for 2 – 3 ps bunch length.

cERL 入射器に要求される各種エラーの仕様

シミュレーションによるエラーへの要求値の検討

	Gun ripple	RF amplitude	RF phase								
Error	0.1 %	0.1 %	0.1 degree								
Difference of arrival time	-120 fs	-100 fs	-120 fs								
Kinetic energy	99.96 %	100.05 %	99.98 %								
Emittance	3.5 % (for 土0.1% error)	1.5 % (for 土0.1 % error)	2.5 % (for 土0.1 degree error)								
Gun ripple < 0.1 %, RF amplitude error < 0.1 %, RF phase error < 0.1											

1-loop cERLのビーム光学系

T. Shiraga, N. Nakamura et al., PAC09

2-loop cERLのデザインスタディ

これまでの検討の主な資料

ERL検討会

- 2006年~現在(計41回)
- ERL全般に関する報告・議論
- 議事録、資料をウェッブで公開

http://pfwww.kek.jp/ERLoffice/index.html

ERL	計画推進室 Project Office	大学共同共同建立人					
計画推進室 法課課準 Project Office Affild State Affild State Fasto-Gent Affild State Fasto-Gent Bit on Units Fasto-Gent Bit on Units <t< th=""><th>5-0801 茨城県つくば市大穂1-1</th></t<>		5-0801 茨城県つくば市大穂1-1					
SHEWSBIN (NONE) / /	シークション 中田推進室 アスのちつの31 アスのもの31 アスのもの31						
護事録	関係資料	兒表者					
 第41回ERL検討会 3月16日(火)14:00~ KEK PF研究練2階会議室 	「FLS2010報告」 「主加連部総伝導空洞の報告」 「東方ウンターホールの現状」 「FRL構進率報告」	中村 典雄(ISSP) 梅森 健成(KEK) 芳賀 開一(KEK) 河田 洋(KEK)					
 第40回ERL検討会 2月17日の()14:00~ KEK PF研究棟2階会議室 	「東カウンターホール改修状況」 「ERL推進室報告」	多田野 幹人(KEK) 河田 洋(KEK)					
 第39回ERL検討会 1月20日(水)14:00~ KEK. PF研究棟2階会議室 	「東方ウンターホール改修の進捗状況」 「主加速部超伝導空洞開発の現状」 「ERL推進寧報告」	海岡 聖二(KEK) 梅森 健成(KEK) 河田 洋(KEK)					
•第38回ERL検討会 12月09日(水)14:00~ KEK PF研究棟2階会議室	「GERLの制御茶」 「新たな条件での放射線進設計算」 「東カウンターホールの作業状況およびスケジュ ール」 「ERL推進案報告」	常名 宗(KEK) 芳賀 間一(KEK) 坂中 章悟(KEK) 河田洋(KEK)					
 第37回ERL検討会 11月11日(水)14:00~ KEK PF研究棟2階会議室 	「放射線科学センターとの打合せ」 「cERL入射器の進捗状況」 「電子銃進捗状況」	芳賀 閏一(KEK)					
•第36回ERL検討会 10月14日(水)14:00~ KEK PF研究棟2階会議室	「入身部Iの放射線連載について」 「ダラスペリー研究所のERL(ALIOEが)現状」 「WS(Accelerator Physics of Future Light Sources弾管力」 「ERL推進室報告」	芳賀 開一(KEK) 原田 健太郎(KEK) 帯名 帯(KEK) 河田 洋(KEK)					
 第35回ERL検討会 9月2日(水)14:00~ 	「cERLビームラインにおける 同期システムの設計」	野澤 使介(KEK) 永井 良治(JAEA)					

ERLビームダイナミックスWG

- 2006年~現在(計47回)
- 主にビーム光学、ビーム力学に 関する議論
- 議事録、資料をウェッブで公開

「コンパクトERLの設計研究」

- 2008年2月出版 (188頁)
- KEK Report 2007-7

	計画推進室 Project Office	大学共同利用植物体。在
現在の場所:HOME>う	〒3 「ータペース>WGミーティングメモ・関係資料集 ビールダイナミクフWGミーティングメモ・関係資料(Decess	15-0801 茨城県つくは市大都
		Beansdynamics V
WGミーティングメモ	資料名	作者名
第47回 2010. 3. 17 →ミーティングメモ	「XFEL-Oに向けたcERL入射部での最小エミッタンスの評価(1)」	宮島 司(KEK)
第46回 2010. 2. 16 →ミーティングメモ	「空洞数減少時のオブティクス・マッチング」	原田 健太郎 (KEK)
第45回 2010. 2. 2 →ミーティングメモ	「束縛条件付き固有ペクトル法のERL軌道補正への応用」 「 「ERL 2ルーブ周回部の検討」 「 cERLのオプティクス設計の続き」	中村 典雄(東大物性研 原田 健太郎(KEK) 鳥田 美帆(KEK)
第44回 2009. 12. 24 →ミーティングメモ	「cERLラティス設計のつづき」 「cERLビーム診断系」	島田 美帆 (KEK) 帯名 崇 (KEK)
第43回 2009. 11.25 →ミーティングメモ	「主加速空洞アライメノト誤差の影響(3)」 「ラティス設計の進捗状況」	中村 典雄(東大物性研 島田 美帆 (KEK)
第42回 2009. 10.27 →ミーディングメモ	「主加速空洞アラインメント語差の影響(2)」 「ラティス設計の続き」	中村 典雄 (東大物性研 鳥田 美帆 (KEK)
第41回 2009. 9.29 →ミーティングメモ	「主加速空洞アラインメント訳差の影響」 「ラティス検討の進捗状況」	中村 典雄 (東大物性研 島田 美帆 (KEK)
第40回 2009, 9.1 →ミーティングメモ	「パンチャー空洞の入力カップラー関連の計算」 「ラティス設計に関する報告」 「X-FELO (S-GeV ERL) のための速度集群の提案」	梅森健成(KEK) 島田美帆(KEK) 羽島 良一(JAEA)
第39回 2009. 7.23 →ミーティングメモ	「バンチャー空洞形状の影響(1)」 「バンチャー空洞による横方向キックの検討」 「5GeV-FRLの裏案」	宮島 司 (KEK) 坂中 章悟 (KEK) 島田 美帆 (KEK)

最終更新日	cERL長期スケジュール						20	10年	度																		2012年度										
2010/4/16							2010)年度						2011年度																	201	2年度			_		
グループ	工程	4月	5	6	7	8	9	10	-11	12	1	2	3	4月	5	6	7	8	9	10	-11	12	1	2	3	4月	5	6	7	8	9	10	- 11	12	1	2	3
	cERLビーム運転																																		ピーノ	ム運転	
全体予定		<u> </u>	<u> </u>		<u> </u>								<u> </u>	_	-	-	_	-																	<u> </u>	<u> </u>	<u> </u>
							-0-01							_				<u> </u>										<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	──′	
	放射線シールド	[82.81							T	구스젠	于続き				=2	ールド	建設	=												<u> </u>	──'	1
連続・ハロラ・中全	付帯設備(空調等)設置						任律機	87 -							 	手続き	+			一付	帯設備	設置			-	-						-					-
建物・インシア・反正	安全インターロック等					4	東町・副	ERT '						T -	-	-	-	- 秋	11=						-	•				- 88	E • 50.	<u> </u>				\square	ί−−
	放射線申請		<u> </u>										-		-		-	+												+	I I	. —			<u> </u>	<u> </u>	$ \rightarrow $
		-								<u> </u>	<u> </u>			-	+						<u> </u>	<u> </u>				_			<u> </u>	<u> </u>	<u> </u>				<u> </u>	──′	<u> </u>
	500kV第2電子銃本体	•	-		-	₽ *(本租立	試験	_		-		\vdash	•	+	+	=≋	圧試験	=		=	•		▲試験 (南)	-	— *	€CH∦≶ I	設二	•	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>
	電子銃用高圧電源	•			-		TE 1913	Q1F -			-		-	•	+		-	-				<u> </u>					Courter				<u> </u>				<u> </u>	──′	<u> </u>
電子鏡·入射部	診断用ビームライン	⊨	-	-		設計・	設作・	皆付(A	R南棟)	_	-		=	•	+		+		<u> </u>			<u> </u>				• •	CH移	<u>R</u> —	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	—	<u> </u>
	ドライブレーザー	•	-	-	開外	8(10mA	(用) ・	—	-	•	<u> </u>	<u> </u>					-									-*	(CH移)	<u> </u>	•						──	—'	<u> </u>
		-											-	_	-	-	-																		<u> </u>	—'	<u> </u>
			<u> </u>					<u> </u>			<u> </u>		ļ			I					-	-		_							<u> </u>				──	—'	<u> </u>
	2セル超伝導空洞(3台)	•			空洞	3台製)	<u>*</u>		-	•		縦測	Ē _		• °	ヤケット	溶接	•			○入射 完成	部への 検査、)設置、 冷却開り	÷]											\vdash	<u> </u>	<u> </u>
	入力カップラー(6台)	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>		•		一製作			• - 7	電力部	(B) -	•	- 20		S.			2							<u> </u>				<u> </u>	—'	<u> </u>
人射器SC空洞	クライオモジュール	-	<u> </u>					<u> </u>					<u> </u>	_	-	-	_		•	2 -	設置	/市山 (低)	武康	_ 冷劫 - (大1	試験				<u> </u>	— z	転可能	' —			<u> </u>	—'	<u> </u>
	設置·試験	<u> </u>													_	_	_					•	•		-	•			+			+					
		<u> </u>			<u> </u>								<u> </u>	_	_	_	_	-					-													\vdash	\vdash
	高圧ガス申請	-	申請	=	•										_			_					完成	検査		•	申請		•								\vdash
	空洞2台製作	<u> </u>						- 2	洞2台	設作 -		-		•		- *	測定 -	-		•	シャケッ	r −	•													<u> </u>	⊢
主SC空洞	クライオスタット等製作	<u> </u>								7713	スタット	~等製1	<u>۽ ج</u>			- *	測定		-				►	全体組	立	•										\vdash	\vdash
	据付												<u> </u>																•	· 据付 ·		•			 	<u> </u>	\vdash
															_	_																					\vdash
	HLRF(H20補正予算分)	<u> </u>	設置・調	整 _	•		-	試運転		•			<u> </u>																						 	<u> </u>	\vdash
	HLRF(H20補正以外)				100 100 100	14.000									_																						\vdash
RF	LLRF		-7		温度報	133410		<u> </u>					<u> </u>				<u>ا</u>	ーム運	転用ソ	ハウェ	ア開発				•	•	ケーブ	ル敷設	_					•	- 試運	₩ -	=
	LLRF			•			ソフト	ウェア	平価・関	<u>* _</u>				•	一入身	控洞へ	の配線	€·総合	試験一	_		⁷	転	-	•		•	- 70	う組み	込み・	総合試	験		•	<u> </u>	\vdash	\vdash
															_	_		_																			\vdash
	完成検査·試験	◆ 完成	複査・	•			試運	転(新	読的)					•																					<u> </u>	<u> </u>	\vdash
ヘリウム冷凍機		<u> </u>											<u> </u>		_	_																				\vdash	\vdash
													<u> </u>																						 	<u> </u>	\vdash
	電磁石・電源	•					-設計							•	-	-	-	-	製作	=					-	•	- 4 8	場測算		•	<u></u> #	付・ア	ラインメ	2F -	-••	試験	\vdash
電磁石		<u> </u>											<u> </u>																						 	<u> </u>	\vdash
																																					\square
																																					\square
	真空系	•					設計							•		-			製作							•					据付	_			\models	-	\square
真空																																					
	ビーム診断系	•					設計							•					製作						-	•					設置					•	
1- /, 10 NG - 04 (44	制御系(ハードウェア)	•					- 設計							••					一製作	·					-	•					一設備	t —					
C	制御系(ソフトウェア)	•					設計							•					一開务												•	-		試験		•	

建物等のインフラ整備が完了(H20年度補正予算)

液体ヘリウム冷凍機(設置後)

• 冷凍能力: 600 W (at 4K)

塗り床(作業中の写真)

冷却水設備の更新(設置後)

2010年4月(見学会)の東カウンターホール内

3. まとめ

まとめ

ERLプロジェクト

- 5-GeV ERLにより、超高輝度、超短パルス放射光源を実現。 将来は共振器型X線自由電子レーザーに発展させる構想。
- 2ループ方式を用いることにより、低コスト化を目指す。
 (予想される性能次第では、1ループ方式とする可能性もあり)。

コンパクトERL

- 2012年度中に、35 MeV, 10 mA でのコミッショニングを目指す。
- 当初、周回部1ループ、主加速空洞9セル×2台で運転開始。加速空洞を 増設可能(最大9セル×8台) → 125 MeV(1ループ)
- 周回部を2ループ化することで、ビームエネルギーを2倍にすると同時に、
 2ループERLの諸問題をスタディ可能。
- 主要なインフラは既に整備された:
 -- 建物改修、ヘリウム冷凍機、クリーンルーム、RF源の一部)