RF SOURCE OF cERL IN KEK

T. Miura[#], S. Fukuda, S. Michizono, M. Akemoto, D. Arakawa, H. Katagiri, T. Shidara, T. Takenaka, H. Nakajima, K.

Nakao, H. Honma, H. Matsushita, S. Matsumoto, T. Matsumoto, Y. Yano, M. Yoshida, A. Akiyama, S. Sakanaka, T.

Takahashi,

High Energy Accelerator Research Organization (KEK)

1-1 Oho, Tsukuba, Ibaraki, 305-0801

Abstract

The compact Energy Recovery Linac (cERL) is under construction in KEK as the pre-stage of the 5-GeV ERL. A 300kW CW klystron and an associated power supply for an injector linac, an IOT, and a 30-kW CW klystron were installed. A 150-kW test bench was also built up for the injector couplers at PF Power Supply Hall in KEK. A digital low-level RF (LLRF) system has been developed for a high stability of the RF field on the basis of the previous experience at STF in KEK. In this paper, the status of RF sources for cERL is reported.

KEK における cERL の高周波源

1. はじめに

KEK では、将来計画として 5-GeV ERL を検討し ており、技術的な検討と実証性を探るため、KEK の東カウンターホールにコンパクト ERL(cERL)の建 設を進めている。cERL は、入射器とエネルギー回 収を行う主リニアックから構成され、1.3 GHz の超 伝導(SC)加速空洞が用いられる。cERL 加速器の ビームエネルギーは 35~245MeV、平均電流が 10~ 100mA、規格化エミッタンスが 0.1~1mm·mrad であ る^[1]。RF 源に要求されている安定度は、5-GeV ERL では 0.01%rms, 0.01°rms と非常に高い。cERL では 当初 0.1%rms, 0.1°rms の安定化を目指し、段階的に 開発を進めることにする。低電力高周波系(LLRF)は、 KEK-STF で実績がある FPGA を用いたデジタル フィードバック制御を採用した^[2]。cERL は 2012 年 度末でのビーム加速を目指しているが、初めはビー ム電流 10mA, ビームエネルギー35MeV でスタート することになった。表1に 35MeV に対する RF の 構成とパラメータを示す。入射器の第 3 空洞(Inj-3) は、離調して使用しないことにし、主リニアック側 の第1、第2空洞は、ベクターサムを行うことによ り、1 つの高周波源でドライブすることにした。本 報告では、cERL の高周波源の開発状況について説 明する。

2.1 300kW CW クライストロン

cERL の CDR^[3] に示すようにビーム電流 100 mA、 1 空洞当たり 1.9 MV の加速を考えると、190 kW が 必要である。フィードバックによる安定化のために は、入力と出力の関係がリニアな点での励振が望ま しく、飽和点に対して 70%のところで励振すると考 えると 270kW が必要となるため、2009 年度に 300kW CW クライストロン(東芝 E37750, ダイオードタ イプ)を開発した。クライストロンの性能を表 2 に 示す。電圧 49.5 kV、ビーム電流 9.75A で、出力パ ワーが 305 kW、効率が 63 %であった。各ビーム電 圧に対する飽和特性のグラフを図 1 に示す。

表2: クライストロンの動作パラメータ

項目	設計値	動作値
ヒーター電圧	12V>	10.5 V
ヒーター電流	20A>	14.5 A
ビーム電圧	52 kV>	49.5 kV
ビーム電流	11A>	9.75 A
飽和出力電力	>270kW	305 kW
パービアンス	0.89µP	0.89µP
動作効率	>50%(目標 60%)	63.2%
電力利得	>38dB	39.5dB

2. 入射器の高周波系

表 1:35 MeV バーションの RI	・バフメータ
----------------------	--------

Item	Unit	Buncher	Inj-1	Inj-2	Inj-3	ML-1	ML-2	
Structure		NC	SC	SC	SC	SC	SC	
Gradient	MV	0.14	1.5	3.5		15	15	
Q _L			8×10^5	2×10^{6}	Detuned	2×10^{7}	2×10^{7}	
Beam Phase	degree	-90	-15 to -30	-10		0	0	
Power Required	kW	4.5	20	55		11	11	
Power Output	kW	6.2	27	76		30		
RF Source		IOT	Klystron	Klystron		IOT		
Power Available	kW	20	30	300		30		

[#] takako.miura@kek.jp

2.2 300kW CW クライストロン用高圧電源

300kW CW クライストロン用の高圧電源は、 2009 年度に製作された^[4]。仕様は、最大出力電 圧・電流が-52kV・11A で、電圧安定性は 0.5%(pp)である。この安定度は、サイリスタの位相制御に よって達成されている。保護回路は、高速に IGBT スイッチを作動させることにより、放電時にクラ イストロンに付与されるパワーが 20J 以下となる ように設計されている。

3. 主リニアックの高周波系

主リニアックの高周波源には、30kW IOT (VKL-9310, CPI)と30kW クライストロン(E3750, 東芝)の 2 種の高周波源を用意した。2 つの高周波源の動作 原理から飽和出力より低い出力では、IOT の方が 高い効率となることが期待される。これらの電源 としては、2009 年度に新規に1 台を製作し、2 台 は JAEA から移管されたものを使用することとし、 KEK の東カウンターホールに設置された。今年度、 これらの評価を行う予定である。

カップラーテストスタンド

入射器の空洞に使用される大電力入力カップ ラーの試験のため、KEK の PF 電源棟の予備電源 と 300kW クライストロンを組み合わせて図 2 のよ うな配置で、150kW CW のカプラーテストスタン ドを PF 電源棟に立ち上げた。カップラー試験の詳 しい結果は、本学会発表^[5]を参照されたい。

図 2: PF 電源棟におけるカップラーテストスタンド

現在は、クライストロンを cERL を展開する東 カウンターホールに移設し、そこで新規に制作し た電源と組み合わせて、再度、カップラーテスト スタンドの立ち上げを進めている。また、東カウ ンターホールでは、IOT を使って主リニアック用 のカップラーテストスタンドも立ち上げる予定で ある。

5. LLRF

cERL では、0.1%、0.1°の振幅、位相安定度が要 求されている。これらを達成するために、デジタ ル LLRF システムの開発が進められている。図 3 に LLRF システムのブロック図を示す。LLRF はデ ジタル制御系、高周波増幅系、高周波モニター系、 機器安全系で構成されている。

図 3: LLRF システムのブロック図

5.1 デジタル制御系

デジタル制御用に、μTCA システムを採用し、4 つの 16 ビット ADC と 4 つの 16 ビット DAC、デ ジタル I/O を有する FPGA ボードを製作した^[6](図 4 参照)。ダウンコンバートされた中間周波数 (10MHz)の信号は、この ADC で取り込み、KEK-STF での実績を基に FPGA での単純な PI フィード バック演算及びフィードフォーワード処理が行わ れる。通信は Ethernet 経由で、各ボードが EPICS-IOC となり EPICS でデータの送受信を行う^[7]。ま た、機器のジッターや分解能以外に高周波安定性 に対して大きく効いてくるものとして、ケーブル や、バンドバスフィルター、ミキサーなどの温度 特性である。そのため、現在これらの機器の温度 特性に対する試験を進めている^[8]。

図 4: デジタル制御ボード

5.2 高周波増幅系

主高周波源励振用増幅器としては、300kW クラ

イストロン用に 100W アンプ、30kW IOT 用には水 冷式の 200W アンプを用意した。両アンプとも、 出力の大きさに対する位相の全変化量は、±5.5°程 度であった。

5.3 機器安全系

高速インターロックモジュールは、J-PARC の機 器安全系 MPS と同じものを採用した。入力モ ジュールには TTL(50Ω)・リレー・光の 3 タイプが ある。インターロック信号は CPU モジュール内の FPGA で高速処理しているため、TTL の場合 1µs 程 度でインターロック信号を出力できる。また、 CPU モジュールには、組み込み Linux が搭載され おり、EPICS 経由で状態やリセットが可能になっ ている。

アークセンサは、ノイズに強く、また、1µs 程の 高速応答を実現するため、光電子増倍管と内径 600µm の太い光ファイバーを組み合わせたモ ジュールを製作し、現在評価を進めている^[9]。

6. 東カウンターホールでの展開

2010年3月に東カウンターホールの改修作業が終 了し、現在高周波源の構築を進めている。図 5 に 示すように中二階を建て、下には入射器用のクラ イストロンや IOT、及びそれらの電源をインス トールしている。中二階の上には空調設備のある LLRF 用のパネルハウスを設置し、19 インチラッ クやケーブルラックなどの整備を進めている。東 カウンターホールにおける高周波源のレイアウト を図 6 に示す。入射器用の高周波源は入射器に近 く、主リニアック用の高周波源も、できるだけ近 い場所に設置を予定している。図 6 には、バン チャー空洞や電子銃が記載されていないが、入射 器回りは非常に混み合っている。それに加え、入 射器は、空洞各々に上下 2 方向から高周波電力を 導入する必要があるため、入射器の非常に狭いス ペースに導波管を接続する必要がある。放射線 シールドに対する導波管の通し方もまだ決まって いないため、導波管のレイアウトは今後の課題で ある。

図 5: 東カウンターホールの高周波源の整備状況

RFsources &Coupler Test Stands

図 6: 東カウンターホールにおける 35 MeV バー ジョンの cERL のレイアウト

7. まとめ

KEK では 2007 年から cERL の開発が始まり、高 周波源の開発が行われてきた。2009 年度に入射器 用の 300kW CW クライストロンと IOT、及びそれ らの電源が製作された。300kW CW クライストロ ンは、カップラーテストのために PF 電源棟で 150kW 運転され、カップラーの試験が実施された。 2010 年 3 月から東カウンターホールでの高周波源 の整備を開始し、300kW クライストロンもここに 移設し、クライストロンや IOT の立ち上げを現在 行っている。LLRF の開発も進行中であり、高い安 定度を達成するためのデジタル制御ボードの R&D、 温度安定度の評価などを進めている。

8. 今後の予定

今年度は、東カウンターホールにおいて入射器 用に 150kW のカップラーテストスタンド、及び主 リニアック用に 30 kW のカップラーテストスタン ドを立ち上げる予定である。2012 年度末のビーム 運転に向け、2011 年にはバンチャー用の IOT、及 び導波管系の整備を進めていく予定である。

参考文献

- [1] S. Sakanaka et al., "ERL 計画の現状", In these proceedings, FSRP09.
- [2] T. Matsumoto et al., "STF Phase-1 におけるデジタル低 電力高周波制御系", Proceedings of Particle Accelerator Society Meeting, Tokai, 2009, FPACA15.
- [3] R. Hajima et al., "コンパクト ERL の設計研究", KEK Report 2007-7, 2008.
- [4] H. Nakajima et al., "cERL における 300kW (CW) クラ イストロン用電源の開発", In these proceedings, THPS051.
- [5] K. Watanabe et al., "cERL 入射器超伝導空洞システム の開発状況", In these proceedings, WEPS064.
- [6] M. Ryoshi et al., "µTCA プラットフォームによる LLRF 制御ボード", In these proceedings, WEPS109.
- [7] H. Deguchi et al., "SuperKEKB 向 LLRF コンポーネントへの EPICS 組込み", In these proceedings, THPS087.
- [8] D. Arakawa et al., "ERL に用いる高周波コンポーネントの温度特性", In these proceedings, WEPS104.
- [9] Y. Yano et al., "PMT アークセンサによる KEKB ARES 空洞のカプラーの観測", In these proceedings, THPS086.