EFFECTS OF TRANSVERSE RESISTIVE-WALL WAKEFIELD ON ERLS

Norio Nakamura

Institute for Solid State Physics, University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581

Abstract

Effects of transverse resistive-wall wakefield on ERLs are presented. Simulation study suggests that resistive-wall beam breakup(RWBBU) can occur in a stainless-steel beam pipe with a small radius for a high-current beam. Furthermore it demonstrates that, in the planned test ERL, beam position displacement due to the resistive-wall wakefield of an Al vacuum chamber with a radius of 25mm increases up to 1% of injection position offset at 77 µs after the beam injection start. Dependences of position displacement on time and beam current obtained by the simulations for the test ERL are consistent with the relation derived from the RWBBU equations. Exact transverse resistive-wall impedance of a round pipe with a finite thickness is also derived here and will be used to calculate the wakefunction valid at any time and to understand the effects of the resistive-wall wakefield on the ERL multi-bunch beam accurately.

横方向抵抗壁ウェーク場のエネルギー回収型ライナックへの影響

1. はじめに

エネルギー回収型ライナック(ERL:Energy Recovery Linac)をベースとする次世代放射光源では、線形加 速器としてはこれまでにない100mA級の大電流が要 求される。このような大電流マルチバンチビームと 加速空洞や真空チュエンバーとの相互作用によって 生じるウェーク場はバンチ結合型のビーム不安定性 を生じさせる可能性がある。特に真空チェンバーな どの抵抗壁ウェーク場によって生じるビームブレー クアップ(RWBBU: Resistive-Wall Beam Breakup)は、 これまでほとんど研究されてこなかった。ここでは、 ERLへの横方向抵抗壁ウェーク場の影響について、 これまでの研究結果について報告する。

2. インピーダンスとウェーク関数

有限な厚みd、半径b、電気伝導率σ、透磁率μ₀を 持つ円形のビームパイプを真空チェンバーと考え、 横方向抵抗壁ウェーク場の影響を評価する上で必要 なインピーダンスと(impedance)とウェーク 関数 (wakefunction)について考える。このパイプの電気双 極子モーメントによる単位長さ当りの横方向イン ピーダンスの厳密解は、計算の結果、次のようにな る。

$$Z_{\perp}(\omega) = \frac{-i}{\pi\varepsilon_0 b^3 \left(\lambda c \alpha - b \omega^2 / 2c\right)}$$
(1)

$$\alpha = \frac{J_2(\lambda b) N_1(\lambda (b+d)) - J_1(\lambda (b+d)) N_2(\lambda b)}{J_1(\lambda b) N_1(\lambda (b+d)) - J_1(\lambda (b+d)) N_1(\lambda b)}$$

$$\lambda = \frac{i + sgn(\omega)}{\delta} \left(\delta = \sqrt{\frac{2}{\sigma \mu_0 |\omega|}}\right)$$

ここで、c, ε_0 , ω , δ は光速度、真空の誘電率、角周波数、表皮の厚み(skin depth)、 J_1 , N_1 , J_2 , N_2 は1次と2次のベッセル関数である。 $sgn(\omega)$ は括弧内の記

号の符号を表す。次のような条件 $|\lambda|b>>1, |\lambda|d>>1, |\lambda|>>b\omega^2/c^2$

を満足する周波数では、式(1)は真空のインピーダンスZ₀を用いて、

(2)

$$Z_{\perp}(\omega) \approx \frac{1}{\pi \varepsilon_0 b^3 \lambda c} = \frac{Z_0 \delta}{2\pi b^3} \{ sgn(\omega) - i \}$$
(3)

と近似できる。これは、抵抗壁のインピーダンスとしてよく使われる式であるが、図1に示すように条件(2)が満足されない領域では良い近似ではない。

ウェーク関数はインピーダンスと次の関係にある。

$$W_{\perp}(z<0) = \frac{-\iota}{2\pi} \int_{-\infty}^{\infty} Z_{\perp}(\omega) e^{i\omega z/c} d\omega$$

$$= \frac{2}{\pi} \int_{0}^{\infty} Re[Z_{\perp}(\omega)] sin(\omega z/c) d\omega$$
(4)

図1:円形ビームパイプの抵抗壁インピーダンス (実数部)。黒破線は、近似式(3)を示す。

ここで、z(<0)はウェーク源を原点とする進行方向の 位置を示し、t=|z|/cはその場所でのウェーク源通過 後の経過時間になる。近似式(3)に対応するウェーク 関数(単位長さ当たり)は経過時間tの関数として次の ように書ける。

$$W_{\perp}(t) = -\frac{1}{\pi b^{3} t^{1/2}} \sqrt{\frac{cZ_{0}}{\pi \sigma}}$$
(5)

この時、条件(2)は経過時間tの逆数を周波数に対応 させると次のようになる。

$$2\pi \sqrt[3]{b^2/\sigma c^3 Z_0} << t << 2\pi b^2 \sigma \mu_0, t << 2\pi d^2 \sigma \mu_0$$
(6)

式(6)によって与えられる経過時間の下限は通常はバンチ間の時間間隔(RF周波数f_{RF}の逆数)に比べて 非常に小さく、バンチ結合型のビーム不安定性とは 無関係である。一方、上限についてはウェーク場の 影響を評価する上で大きな時間的制限を与える。 従って、ウェーク場のERLビームへの長時間にわた る影響を調べるためには、式(1)からウェーク関数を 求めることが必要になる。ただし、以下では近似式 (5)がほぼ成立する条件で、ビームの運動方程式とシ ミュレーションを考える。

3. RWBBU方程式

ERLの真空チェンバー(円形パイプを仮定)に入 射される最初(1番目)とM番目のバンチ(M≥2) の基本的な運動方程式は次のようになる。

$$y_1''(s) + K_y(s)y_1(s) = 0$$
⁽⁷⁾

$$y_{M}''(s) + K_{y}(s)y_{M}(s) = \sum_{N=1}^{M-1} \frac{a(s)}{\sqrt{M-N}} y_{N}(s) \quad (M \ge 2) \quad (8)$$

$$a = \frac{e^{2}N_{e}}{E} \cdot \frac{c}{\pi b^{3}(c\tau_{B})^{1/2}} \sqrt{\frac{Z_{0}}{\pi\sigma_{c}}} = \frac{eI_{B}}{E} \cdot \frac{(c\tau_{B})^{1/2}}{\pi b^{3}} \sqrt{\frac{Z_{0}}{\pi\sigma_{c}}}$$

ここで、 y_M , τ_B , K_y , N_e , EはM番目のバンチの位置、 バンチ間の時間間隔、ERLの収束発散力、バンチ内 の電子数、ビームエネルギーで、 I_B は eN_e/τ_B によっ て定義される平均ビーム電流である。なお、全ての バンチは同じ電子数を持ち、点状であるとした。ま た、ウェーク関数としては式(5)を用いた。式(7)(8)か ら次式が導かれる。

$$\xi_{M}''(s) + K_{y}(s)\xi_{M}(s) = \sum_{N=1}^{M-1} \frac{a(s)}{\sqrt{M-N}} \frac{y_{N}(s)}{y_{00}}$$
(9)

ただし、

$$\xi_{M}(s) = \frac{y_{M}(s) - y_{1}(s)}{y_{00}}$$
(10)

ここで、 ξ_M はM番目のバンチと最初のバンチの位置の変化を入射オフセット y_{00} で規格化したもので、純粋にウェーク場によって生じた変位である。もし、ウェーク場による位置の変化が小さい場合 ($\xi_M \ll$ 1),上の方程式は近似的に次のようになる。

$$\xi_{M}''(s) \approx \sum_{N=1}^{M-1} \frac{a(s)}{\sqrt{M-N}} \frac{y_{1}(s)}{y_{00}}$$

$$\approx 2\sqrt{M}a(s) \frac{y_{1}(s)}{y_{00}} \quad (M >> 1)$$
(11)

条件 $y_{M}'(0)=y_{1}'(0), y_{M}(0)=y_{1}(0)(=y_{00}), a(s)=a$ のもとでは、 $t\sim M\tau_{B}$ として次の関係が成立する。

$$\xi_{M}(s) \propto at^{1/2}$$

$$\propto \sigma^{-1/2} b^{-3} I_{p} E^{-1} \tau_{p}^{-1/2} t^{1/2}$$
(12)

ー方で、変位y_Mがy₀₀に比べて非常に大きい場合の表現について、限られた条件下ではあるが、解析的に漸近解が得られている^[1]。

4. RWBBUシミュレーション

前章で求めた運動方程式をあらゆる場合に対して 解析的に解くことは困難である。そこで、抵抗壁 ウェーク場の影響をシミュレーション(トラッキン グ)するプログラムを開発し^[2]、このプログラムを 用いてシミュレーションを行った。

4.1 一様なビームパイプ

外部収束力のない一様なステンレス製円形ビーム パイプ(b=3mm, $o=1.4x10^{6} \Omega^{-1}m^{-1}$, L=50m)に入射位置 オフセット y_{00} でマルチバンチビーム(E=60MeV, $I_{B}=100$ mA, $f_{RF}=1/\tau_{B}=1.3$ GHz)が入射した場合のシミュ レーション結果を図2に示す。横軸は、パイプ出口 でのバンチの変位を入射オフセット y_{00} で規格化した ものである。図からわかるように、パイプ出口での ビーム位置の変位は横方向ウェーク場によってわず か $t=1.5\mu$ s (M=2000, $t-M\tau_{B}$)後に y_{00} の約27倍に増大 する。 $y_{00}\geq120\mu$ mとすると、1.5 μ s後にはパイプに ビームがぶつかり、RWBBUが起こる。

図2:シミュレーションによる一様な円形パイプ (b=3mm, σ=1.4x10⁶ Ω⁻¹m⁻¹, L=50m)出口でのビーム位 置の時間変化(赤実線)。漸近解^[1](青破線)と良 く合う。

4.2 ERL実証機

次に日本で計画されているERL実証機^[3]に対して シミュレーションを行った。図3にERL実証機のレ イアウトを示す。図に示すように、シミュレーショ ンは超伝導空洞の出口から始めてリターンループを 回ってから超伝導空洞の入口で終了することとし、 垂直方向の位置について行った。マルチバンチ電子 ビーム(*E*=60MeV, I_B =100mA, $1/\tau_B$ =1.3GHz)は、その 間にアルミニウム製の円形ビームパイプ(*b*=25mm, σ =3.5x10⁷ Ω ⁻¹m⁻¹, *L*=56.44m)によるウェーク場と3 7台の四極電磁石の収束発散力を受ける(六極電磁

図4:四極電磁石が全てOFFの場合のウェーク場に よる出口でのバンチ位置の時間変化(赤実線)。こ の場合、漸近解(青破線)は有効でない。

図5:四極電磁石が(a) OFFと(b) ONの場合のビーム の初期軌道(青実線)とウェーク場による軌道変化 (赤破線:M=10000,赤実線:M=100000)。

図4に全ての四極電磁石をOFFにした場合の ウェーク場による出口でのバンチ位置の時間変化を 示す。バンチ位置の変化は時間の1/2乗に比例して増 大し、77µs後(M=100000)に入射位置オフセット y₀₀の3%まで増大した。この場合、ウェーク場による 位置の変化はまだ小さく、関係式(12)の時間依存性 と一致していることがわかる。図5は、1番目のバ ンチの軌道(青線)とそこからのM番目(M=10000, M=100000で、t=7.7µsに対応)のバンチの 軌道変化(赤破線、赤実線)を四極電磁石が OFF/ONの場合それぞれについて示している。四極 電磁石がONの場合、その収束作用によりビームは ビームパイプ中心のまわりを振動し、ウェーク場の 影響を受けにくくなっている。そのため、t=77µsで の最大の軌道変化は約1%で。四極電磁石がOFFの場 合に比べて1/3に減少している。

図6は、四極電磁石ONの時にビーム電流が 100mAと10mAの場合のシミュレーション結果を示 す。シミュレーション出口での軌道変化は同じく時 間の1/2乗で増加し、その比は電流値の比と一致する。 これもウェーク場による影響が小さい場合での関係 式(12)と一致する。他のパラメータ依存性について も関係式(12)から予見することができる。

図6:四極電磁石ONでビーム電流が100mAと10mA の場合のシミュレーション出口での軌道変化とその 比。

5. まとめ

ビームパイプの半径が非常に小さく、電気伝導率 もあまり良くない場合に、抵抗壁ウェーク場によっ て短い時間でビームブレークアップ(RWBBU)が 起こりうる。ERL実証機では、ビーム軌道が入射 77µs後には入射位置オフセットの最大1%程度まで 変化することがシミュレーションから予想される。 さらに長い時間にわたってウェーク場とそれによる ビームへの影響を精確に求めるには、今回導出した 厳密なインピーダンスから計算されるウェーク関数 をシミュレーションや運動方程式に用いる必要があ り、今後の課題である。

6. 謝辞

発表の機会を与えていただいた日本のERL共同研 究者グループおよび東京大学物性研究所附属軌道放 射物性研究施設の加速器グループに感謝します。

参考文献

- [1] J. M. Wang and J. Wu, "Cumulative beam breakup due to resistive-wall wake", PRST-AB 7 034402(2004).
- [2] N. Nakamura, "Study of Resistive-Wall Beam Breakup", ERL07, May 2007, Daresbury, to be published.
- [3] K. Harada et al., "Lattice and Optics Designs of the Test ERL in Japan", ERL07, May 2007, Daresbury, to be published.