STUDY OF RESISTIVE-WALL BEAM BREAKUP

N. Nakamura
ISSP, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

Abstract

Beam breakup (BBU) caused by the long-range transverse resistive-wall wake in ERLs is studied mainly with a developed simulation program. The simulation program is useful and essential for understanding the resistive-wall BBU behaviours especially in the parameter ranges and initial conditions where the asymptotic expressions analytically derived are invalid. The simulation results show that the position displacement or orbit distortion due to the wake increase in proportion to the square root of the time and the wake strength in the early stage of the resistive-wall BBU and that, in case of the test ERL in Japan, the maximum position displacements reach 3% and 1% of the initial position offset with all the quadrupole magnets off and on at $77 \mu \mathrm{~s}$. Effects of a small-gap insertion device(ID) duct and ID focusing are also investigated.

INTRODUCTION

In storage rings such as synchrotron light sources, transverse coupled-bunch instabilities due to long-range resistive-wall wake as well as other instabilities due to RF cavities and ion trapping are sometimes observed against radiation damping[1]. It is expected that transverse multibunch resistive-wall beam breakup can be a serious problem in high-current ERLs. While the BBU due to HOMs of superconducting cavities has been much investigated, the resistive-wall beam breakup (RWBBU) has been hardly studied and only the asymptotic expressions were analytically derived in simple and limited conditions[2]. In this paper, more detailed study of the RWBBU with a simulation program is presented.

RESISTIVE-WALL WAKE

The long-range transverse resistive-wall wake-function for a round pipe with a radius b, length L and electric conductivity σ_{c} is expressed by

$$
\begin{equation*}
W_{\perp}=-\frac{c L}{\pi b^{3} z^{1 / 2}} \sqrt{\frac{Z_{0}}{\pi \sigma_{c}}} \tag{1}
\end{equation*}
$$

where c, Z_{0} and z are the velocity of light, the vacuum impedance and the distance from the wake source such as a preceding bunch. Eq. (1) is valid under the following condition:

$$
\begin{equation*}
\sqrt[3]{\frac{b^{2}}{\sigma_{c} Z_{0}}} \ll z \ll b^{2} \sigma_{c} Z_{0} \tag{2}
\end{equation*}
$$

An electron is kicked by such wake and the transverse kick by a preceding bunch with the position y and the distance z is given by

$$
\begin{equation*}
\Delta \theta_{y}=-\frac{e^{2} N}{E} W_{\perp} \cdot y=\frac{e^{2} N}{E} \cdot \frac{c L}{\pi b^{3} z^{1 / 2}} \sqrt{\frac{Z_{0}}{\pi \sigma_{c}}} \cdot y \tag{3}
\end{equation*}
$$

where E is the beam energy and N is the electron number in the bunch. The wake-field is easily cumulated in the multi-bunch beam, because it is slowly decayed following Eq. (1). It also depends on pipe characteristics such as pipe radius, electric conductivity and length. On the other hand, the long-range longitudinal wake-function is given by

$$
\begin{equation*}
W_{/ /}=-\frac{c L}{\pi b z^{3 / 2}} \sqrt{\frac{Z_{0}}{\pi \sigma_{c}}} \tag{4}
\end{equation*}
$$

In this case, cumulation of the resistive-wall wake-field is relatively smaller than in the transverse case. Thus only the transverse beam breakup is treated here.

ASYMPTOTIC EXPRESSION

Here the asymptotic expressions[2] for the RWBBU is reviewed. The asymptotic expressions were analytically derived from the following equation:

$$
\begin{align*}
& y_{M}{ }^{\prime \prime}(s)+k_{y}^{2} y_{M}(s)=\sum_{N=1}^{M-1} \frac{a}{\sqrt{M-N}} y_{N}(s) \quad(M \geq 2) \tag{5}\\
& a \equiv \frac{e^{2} N}{E} \cdot \frac{c}{\pi b^{3}\left(c \tau_{B}\right)^{1 / 2}} \sqrt{\frac{Z_{0}}{\pi \sigma_{c}}}=\frac{e I_{B}}{E} \cdot \frac{\left(c \tau_{B}\right)^{1 / 2}}{\pi b^{3}} \sqrt{\frac{Z_{0}}{\pi \sigma_{c}}}
\end{align*}
$$

where τ_{B} and k_{y} are bunch time separation and external focusing strength, and I_{B} is the average beam current defined by $e N / \tau_{B}$. Eq. (5) shows equation of motion for the M-th bunch $(M \geq 2)$ for the case where an electron beam consisting of a series of identical point-like bunches passes through a round pipe with uniform external focusing. For two extreme cases, no focusing(NF) case and strong focusing(SF) case, the asymptotic expressions are given by

$$
\begin{gather*}
y_{M}(s)=\frac{y_{00}}{\sqrt{2 \pi}}\left(\frac{t_{N F}}{t}\right)^{\frac{1}{10}} \cdot \exp \left[\left(\frac{t}{t_{N F}}\right)^{\frac{1}{5}}\right] \tag{6}\\
t_{N F}=\frac{\tau_{B}}{4 \pi}\left(\frac{4}{5}\right)^{5} \frac{1}{a^{2} s^{4}} \tag{7}
\end{gather*}
$$

and

$$
\begin{align*}
y_{M}(s)= & \frac{y_{00}}{\sqrt{2 \pi}}\left(\frac{t_{S F}}{t}\right)^{\frac{1}{6}} \exp \left[\left(\frac{t}{t_{S F}}\right)^{\frac{1}{3}}\right] \cos \left[\sqrt{3}\left(\frac{t}{t_{S F}}\right)^{\frac{1}{3}}-k_{y} s-\frac{\pi}{6}\right] \\
t_{S F} & \equiv \frac{16 k_{y}^{2} \tau_{B}}{\pi}\left(\frac{2}{3}\right)^{3} \frac{1}{a^{2} s^{2}} \tag{8}
\end{align*}
$$

respectively. The initial condition is that all the bunches have the same position offset $y_{M}(0)=\ldots y_{2}(0)=y_{1}(0) \equiv y_{00}$ at the pipe entrance and the time t from the injection of the initial bunch is approximately equal to $M \tau_{B}$ for infinite bunch number $(M \rightarrow \infty)$. The t_{NF} and t_{SF} are the growth time for the two cases.

These expressions require some conditions to be valid. These conditions are as follows:
(i) NF case

$$
\begin{equation*}
\alpha_{1}^{4 / 5} \ll 1, \quad \frac{a \sqrt{\pi}}{k_{y}^{2} \alpha_{1}^{2 / 5}} \gg 1, \quad t \gg \frac{s}{c}, \quad t \gg t_{N F} \tag{10}
\end{equation*}
$$

(ii) SF case

$$
\begin{equation*}
\alpha_{2}^{2 / 3} \ll 1, \quad \frac{k_{y}^{2} \alpha_{2}^{1 / 3}}{a \sqrt{\pi}} \gg 1, \quad t \gg \frac{s}{c}, \quad t \gg t_{S F} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{1}=\frac{\sqrt{a \sqrt{\pi}} s}{4 M}, \quad \alpha_{2}=\frac{a \sqrt{\pi} s}{4 M k_{y}} \tag{12}
\end{equation*}
$$

Thus the asymptotic expressions are valid only for the limited parameter ranges satisfying (10) or (11). Initial conditions are also limited. Therefore a simulation program is needed to study RWBBU more minutely and generally.

RWBBU SIMULATION

A simulation program has been developed to study the RWBBU behaviors and to evaluate effects of the RWBBU on ERLs. Features of this program are as follows:

- Long-range transverse resistive-wall wake
- Lowest mode (dipole mode)
- Rigid and point-like bunches
- 1-D tracking
- Single pass
- Combination of round pipes with/without external focusing or defocusing
- Basic time increment is the bunch seperation τ_{B} divided by an integer N_{D} (division number)
In order to check the simulation program, simulations are compared with analytic solutions for some special cases. The first is no wake case with uniform external focusing. In this case, the transverse position along the longitudinal location s is just sine-like for all the bunches. Figure 1 shows an example with $k_{y}=3 \mathrm{~m}^{-1}$. The position displacement is normalized by the initial offset y_{00}. The simulation result for $N_{D}=10$ is consistent with the exact solution. It should be noted that the division number must be carefully selected for strong focusing, because an insufficient division number leads to a wrong result as shown for $N_{D}=1$ in the figure. The second is non-zero wake case without external focusing for a small bunch number. In this case, Eq. (5) can be analytically solved and the exact solutions are given by

$$
\begin{equation*}
y_{2}(s) / y_{00}=1+\frac{1}{2} a s^{2} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{3}(s) / y_{00}=1+\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}\right) a s^{2}+\frac{1}{24} a^{2} s^{4} \tag{14}
\end{equation*}
$$

for the second and third bunches ($M=2$ and 3$)$, respectively. As shown in Fig. 2, the simulation results are in good agreement with the analytic solutions.

Figure 1: Simulation results $\left(N_{D}=1,10\right)$ and analytic solution $\cos \left(k_{y} s\right)$ for no wake case with external focusing $k_{y}=3 \mathrm{~m}^{-1}$.

Figure 2: Simulation results and analytic solutions for the second and third bunches ($M=2$ and 3) in non-zero wake case ($a=0.5 \mathrm{~m}^{-1}$) without external focusing.

Next simulations are compared with the asymptotic expressions. Figures 3 and 4 show examples of NF and SF cases, respectively. Parameter values were properly chosen for each case so that they should almost satisfy the condition (10) or (11). The blue broken lines indicate the asymptotic expressions and the red solid lines simulation results. The simulation results are also in agreement with the asymptotic solutions. From these comparisons, it is concluded that the simulation program works well.

Figure 3: Simulation result $\left(N_{D}=10\right)$ and asymptotic expression for no focusing case ($a=2.62 \times 10^{-5} \mathrm{~m}^{-1}, L=50$ m).

Figure 4: Simulation result $\left(N_{D}=10\right)$ and asymptotic expression for strong focusing case ($a=2.62 \times 10^{-3} \mathrm{~m}^{-1}, k_{y}=3$ $\left.\mathrm{m}^{-1}, L=10 \mathrm{~m}\right)$.

SIMULATION IN THE TEST ERL

The simulation program was applied to the test ERL in Japan, which is being designed[3]. Figure 5 shows layout of the test ERL. Simulation conditions are as follows:

- Beam energy $E=60 \mathrm{MeV}$, average beam current $I_{B}=100 \mathrm{~mA}$ for uniform bunch filling, and bunch separation $\tau_{B}=0.769 \mathrm{~ns}$ (RF frequency $f_{R F}=1.3$ GHz).
- All the vacuum ducts are assumed to be Al pipes with $b=25 \mathrm{~mm}$ and $\sigma_{c}=3.5 \times 10^{7} \Omega^{-1} \mathrm{~m}^{-1}$.
- The simulation start and end points are the exit and entrance of the superconducting cavity section as shown in Fig. 5 and the total path length L is 56.44 m.
- All the bunches have the same initial position offset y_{00} at the simulation start point.
- 1-D tracking in the vertical direction for $t \leq 77 \mu \mathrm{~s}$ ($M \leq 100000$).
- Focusing and defocusing of 37 quadrupole(Q) magnets in the beam path are considered.
- Sextupole magnet fields, magnet and duct alignment errors, orbit correction by correctors are not considered.
- When the insertion device(ID) is considered, its vacuum duct is assumed to be a stainless-steel(SS) pipe with a radius of 10 mm , a conductivity of $1.4 \times 10^{6} \Omega^{-1} \mathrm{~m}^{-1}$ and a length of 10 m .
First a situation with all the Q-magnets off and without the ID is considered for simulation. In this situation the test ERL just equals the Al pipe with a constant radius of 25 mm and a total length of 56.44 m and without external focusing and defocusing. Figure 6 shows position displacement due to resistive-wall wake at the simulation end point ($s=L$) normalized by the initial position offset y_{00} as function of time t or bunch number M. The normalized position displacement does not depend on the value of y_{00}. The position displacement obtained from the simulation is proportional to $t^{1 / 2}$ and increase up to 3% of the initial position offset at $77 \mu \mathrm{~s}$. The asymptotic expression of NF case indicated by the blue broken line in

Fig. 6 monotonously decreases with the time and it is not in agreement with the simulation result. For the parameter range, the asymptotic expression is invalid and the simulation is essential for obtaining correct results.

Figures 7 (a) and (b) show orbit distortions $y_{M}(\mathrm{~s})-y_{1}(\mathrm{~s})$ due to the RW wake along the beam pipe with all the Qmagnets off and on, together with initial orbits $y_{1}(\mathrm{~s})$. These initial orbits and orbit distortions are also normalized by the initial position offset y_{00} in the figures. Since every bunch except the first bunch are continuously kicked by the RW wake in the same direction, the orbit distortion monotonously increases with the longitudinal distance s in Fig. 7(a). On the other hand, in Fig. 7(b), the orbit distortion is oscillatory along the beam pipe because the initial orbit is also oscillatory around the pipe center by the Q-magnet focusing. As a result, the maximum orbit distortion is reduced down to 1% of the initial position offset from 3%. Orbit correction is expected to be effective for suppressing the growth of the resistive-wall BBU, though pipe alignment error may be still left even after perfect COD correction. Figures 8 (a) and (b) show the conductivity and current dependences of the RWBBU with all the Q-magnet on. In Fig. 8(a), position displacements at the exit for two cases of Al and SS pipes and their ratio are shown as a function of time. The ratio is almost constant and just equals the ratio of the electric conductivities of SS and Al. In Fig. 8(b), position displacements for the average currents of 100 mA and 10 mA and their ratio are shown as function of time. The ratio is also constant and equals the ratio of the average currents. These results suggest that position displacement due to the RW wake is simply proportional to the wake strength a within the simulated bunch number or time.

Figure 5: Layout of the test ERL in Japan

Figure 7: Initial orbits and orbit distortions due to the RW wake for $M=10000$ and 100000 with all the Q-magnet (a) off and (b) on in the test ERL. The bunch numbers M $=10000$ and 100000 correspond to the times $t=7.7$ and $77 \mu \mathrm{~s}$.

Figure 8: Position displacements at exit due to RW wake (a) for electric conductivities of pipes $\sigma_{c}=1.4 \times 10^{6} \Omega^{-1} \mathrm{~m}^{-1}$ (SS: stainless steel) and $3.5 \times 10^{7} \Omega^{-1} \mathrm{~m}^{-1}$ (Al: aluminum) and (b) for the average currents $I_{B}=100 \mathrm{~mA}$ and 10 mA with all the Q-magnet on as a function of time. Their ratios are also shown.

Figures 9 (a) and (b) show effects of a small-gap ID duct and the ID focusing respectively. As shown in Fig. 9 (a), simulated orbit distortion due to the RW wake significantly increase in downstream of the ID section because of strong resistive-wall wake due to the smallgap ID duct. On the other hand, in Fig. 9(b), the orbit distortion is well reduced because the initial orbit is oscillated around the pipe center by the ID focusing ($k_{y}=1$ m^{-1}) in the ID section. However the ID focusing strength is changeable in the user operation and cannot always be effective for suppression of the RWBBU. A coppercoated SS duct can be effective for reducing the wake strength in the ID section[4].

Figure 9: Initial orbits and orbit distortions due to the RW wake for $M=10000$ and $100000(t=7.7$ and $77 \mu \mathrm{~s})$ with ID focusing strength (a) $k_{y}=0 \mathrm{~m}^{-1}$ and (b) $k_{y}=1 \mathrm{~m}^{-1}$ in a small-gap ID pipe at ID section.

DISCUSSIONS

Parameter Dependences

In the previous section, the simulation results suggested that the position displacement due to the RWBBU is proportional to $t^{1 / 2}$ and a. Here the RWBBU behavior is checked with an analytic method. The basic equations of the RWBBU for the initial ($M=1$) and M-th $(M \geq 2)$ bunches are given by

$$
\begin{align*}
& y_{1}^{\prime \prime}(s)+K_{y}(s) y_{1}(s)=0 \tag{15}\\
& y_{M}^{\prime \prime}(s)+K_{y}(s) y_{M}(s)=\sum_{N=1}^{M-1} \frac{a(s)}{\sqrt{M-N}} y_{N}(s) \quad(M \geq 2) \tag{16}
\end{align*}
$$

Eq. (16) is identical with Eq. (5) except that uniform focusing strength $k_{y}{ }^{2}$ and wake strength a in Eq. (5) are extended to non-uniform focusing or defocusing strength $K_{y}(\mathrm{~s})$ and wake strength $a(s)$. From these two equations, the following equation is obtained:

$$
\begin{equation*}
\xi_{M}^{\prime \prime}(s)+K_{y}(s) \xi_{M}(s)=\sum_{N=1}^{M-1} \frac{a(s)}{\sqrt{M-N}} \frac{y_{N}(s)}{y_{00}} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi_{M}(s) \equiv \frac{y_{M}(s)-y_{1}(s)}{y_{00}} . \tag{18}
\end{equation*}
$$

The symbol ξ_{M} is the position displacement of the M-th bunch from the initial bunch position normalized by the initial position offset y_{00} and it is caused by the cumulated resistive-wall wake. In the early stage of the RWBBU $\left(\xi_{M}\right.$ $\ll 1$), this equation is approximately rewritten by

$$
\begin{align*}
\xi_{M}^{\prime \prime}(s) & \approx \sum_{N=1}^{M-1} \frac{a(s)}{\sqrt{M-N}} \frac{y_{1}(s)}{y_{00}} \tag{19}\\
& \approx 2 \sqrt{M} a(s) \frac{y_{1}(s)}{y_{00}} \quad(M \gg 1)
\end{align*}
$$

For $y_{M}^{\prime}(0)=y_{1}^{\prime}(0), y_{M}(0)=y_{1}(0)$, and $a(\mathrm{~s})=a$, the following relation is derived from Eq. (19):

$$
\begin{align*}
\xi_{M}(s) & \propto a t^{1 / 2} \tag{20}\\
& \propto \sigma_{c}^{1 / 2} b^{-3} I_{B} E^{-1} \tau_{B}^{1 / 2} t^{1 / 2}
\end{align*}
$$

This relation is consistent with the simulation results in Figs. 5 and 8. In addition, dependences of the RWBBU on other parameters such as the beam energy, the pipe radius and the bunch separation are forseen.

Validity of Wakefunction

The validity of the simulation results depends on that of Eq. (1). From the condition of (2), one can estimate the distance z where the wakefunction of Eq. (1) is valid. When all the vacuum ducts of the test ERL are Al pipes with a radius $b=25 \mathrm{~mm}$ and an electric conductivity $\sigma_{c}=$ $3.5 \times 10^{7} \Omega^{-1} \mathrm{~m}^{-1}$, the valid distance range is given by

$$
\begin{equation*}
3.62 \times 10^{-5} \ll z[\mathrm{~m}] \ll 8.24 \times 10^{6} \tag{21}
\end{equation*}
$$

The above distance range is easily converted to the valid time range as

$$
\begin{equation*}
1.21 \times 10^{-13} \ll t[\mathrm{sec}] \ll 2.75 \times 10^{-2} \tag{22}
\end{equation*}
$$

The upper time limit for the validity of Eq. (1) is 27.5 ms , which corresponds to $M=3.575 \times 10^{8}$ and 3575 times larger than the maximum simulation time, $77 \mu \mathrm{~s}$. Similarly the valid time ranges for the stainless steel(SS) pipe case (σ_{c} $=1.4 \times 10^{6} \Omega^{-1} \mathrm{~m}^{-1}$) are given by

$$
\begin{equation*}
3.53 \times 10^{-13} \ll t[\mathrm{sec}] \ll 1.10 \times 10^{-3} \quad(b=25 \mathrm{~mm}) \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
1.92 \times 10^{-13} \ll t[\mathrm{sec}] \ll 1.76 \times 10^{-4} \quad(b=10 \mathrm{~mm}) . \tag{24}
\end{equation*}
$$

The upper time limits for the SS pipe case are 1.1 ms and $176 \mu \mathrm{~s}$ for $b=25 \mathrm{~mm}$ and $b=10 \mathrm{~mm}$. They are still larger than the maximum simulation time and Eq. (1) is valid for both cases. Therefore the parameter values used for the simulations almost satisfy the condition of (2).

Next effects of the pipe thickness are considered. Eq. (1) is derived under the assumption that the pipe thickness is infinite. However such assumption is not always appropriate. Here the upper time limit is roughly estimated as the inverse of the frequency of which the skin depth is equal to the pipe thickness d. The upper time limit $t_{u l}$ is given by

$$
\begin{equation*}
t_{u l} \cong \pi \mu_{0} \sigma_{c} d^{2} \tag{25}
\end{equation*}
$$

where μ_{0} is the permeability of vacuum. For the Al pipe case with $d=5 \mathrm{~mm}$, the upper time limit is 3.45 ms and
larger than the maximum simulation time. On the other hand, for the SS pipe case with $d=2 \mathrm{~mm}$, the upper time limit is $22 \mu \mathrm{~s}$ and smaller than the maximum simulation time of $77 \mu \mathrm{~s}$. In this case, the wakefunction of Eq. (1) may be somewhat modified. If the simulation time is much increased even for the Al pipe case, the wakefunction should be modified. The effects of the pipe thickness as well as the pipe conductivity and radius on the wakefunction should be further investigated to know the RWBBU behaviors at larger times.

SUMMARY AND CONCLUSION

A simulation program of the RWBBU has been developed because the asymptotic expressions are valid only in the limited parameter ranges and initial conditions. The simulation program is useful for studying the transverse RWBBU more minutely and generally. The simulation program was applied to the test ERL in Japan. In the simulations, the maximum position displacements with all the Q-magnets off and on are about 3% and 1% of the initial position offset at $77 \mu \mathrm{~s}$. The Q-magnet focusing contributes to slowing the RWBBU growth and orbit correction is also expected to be effective. A smallgap ID duct significantly increases the orbit distortion, and the ID focusing well suppresses the RWBBU growth, though it is changeable. The RWBBU should be further studied with simulations and the simulation program should also be developed to introduce a new definition of the wakefunction for wider time range, pipe alignment errors, orbit correction due to correctors, non-linear field elements such as sextupole magnets, copper-coating effects on the ID duct wake and so on. Furthermore simulation results should be compared experimentally and quantitatively with operational data of the planned test ERL and/or the existing ERLs to confirm the validity of the simulations. Finally schemes of overcoming the RWBBU must be surveyed and studied, if necessary.

REFERENCES

[1] See, for example, J. M. Filhol et al., "Overview of the Status of the Soleil Project", EPAC'06, Edinburgh, July 2004, p. 249; J. L. Revol and R. Nagaoka, "Observation, modelling and cure of transverse instabilities at the ESRF", PAC'01, Chicago, June 2001, p. 1930.
[2] J. M. Wang and J. Wu, "Cumulative beam breakup due to resistive-wall wake", PRST-AB 7 034402(2004).
[3] K. Harada et al., "Lattice and Optics Designs of the Test ERL in Japan", these proceedings.
[4] N. Nakamura et al., "Reduction in Resistive-Wall Impedance of Insertion-Device Vacuum Chamber by Copper Coating", EPAC'98, Stockholm, August 1998, p984; H. Sakai et al., "Development of Copper Coated Chamber for Third Generation Light Sources", PAC'05, Knoxville, May 2005, p2633

