RFシステムの現状報告

三浦

入射器のRF源

IOTはコレクター部以外は空冷の ため、季節によってパワー変動が 見られる。 秋が最も不安定。。。。

300 kWクライストロンの導波管系

ベクターサムの校正と運動量ジッター

RF 安定度

	BUN	CAV1	CAV2&CAV3	RF安定度は良かったが、当初ビームの運動量ジッター
w/o FB	0.5 % rms 0.7° rms	0.05% rms 1.23° rms	1.0 % rms 3.4° rms	$M_{0.5\%}$ MSC手前に思かりた。 ビームを見ながらCAV3側の位相器でクレスト位置を調整 たところ 道波筒長が24mm 短くなった。つまれ、28dog 公
FB	0.05% rms 0.06° rms	0.01% rms 0.02° rms	0.01% rms 0.02° rms	れていたことになる。 =>間違った位相でVectorSum演算をやっていた。

- 2013/11/25~11/29 空洞エイジング (入射空洞+主空洞)
- 2013/12/9~12/13 空洞エイジング

2013/12/16~12/20ビームコミッショニング

Main LINACのRF源

MLSC1(上流側)用

16 kW CW Solid State Amp.

MLSC1(下流側)用

30 kW CW IOT

アンプユニットは12台。 アンプユニットが壊れた場合、そのユニットへの 電源供給を止めて、低い出力で運転し続けること ができる。 非常に安定である。

30 kW IOTにおける発振事象

-10 -12

8500

1 kW以下で発振が見られた. 出力パワーによって周波数が異なっている 300 Hzは電源リップル

10kHz sampling

-2.5

1000 1500

1.45

1.44

1500

チューナー動作について

空洞電圧が最大となるところで、空洞と入力RFの位相差が0となるように、 空洞と入力RFの位相を校正する。

ー度校正すればOK. 運転期間中での再現性は良かった。

チューナー制御: 空洞と入力RF(カップラー)の位相差が0となるようにフィードバックをかける。

チューナー動作について

入射空洞: 今回の運転は非常に安定。(前回は、温度変化が大きく変わりやすかった) ほとんど動くことがなかった。 ピエゾのFBだけで、追従OK.

主空洞: モーターとピエゾの制御をチューナーボードから行った。 主としてピエゾのフィードバックのみで行ったが、途中、モーターの フィードバック制御も行い、正常に動作することを確認した。

> ピエゾの可動範囲がLimitに近づいたとき、モーターでフィーバックをかけながらピエゾの値 を中央に戻すように調整した。

空洞電界のフィードバックもかけており、ビームには全く影響しなかった。

Main LINAC のRF安定度

CERL:LLRF:FB4:waveform plotting: RF: ON, FB: ON, (KI=1, KP=1000), Cavsim: ON, (WL=67251814), FF: OFF, R=7999.

CERL:LLRF:FB5:waveform plotting: RF: ON, FB: ON, (KI=1, KP=500), Cavsim: ON, (WL=67251808), FF: OFF, R=7999.

今後(1月)の予定

不具合箇所があるため、デジタルフィードバックボードのプルグラムの書き換えを行う。

ボードのデジタルI/Oにおけるノイズ対策が 不十分だったため、FBがクリアされることがあった。

MLSC2に使用しているIOTは発振もあることから、 納品された8 kW半導体アンプに切り替える。

Back-up

	IJSC status & watch out list								
	UPDOWN	FFBASE AMP	Eacc(Pt)	Eacc(Pin)	Pin				
W#1	1.18	0	3.58 MV/m	3.69 MV/m	0.72 kW				
V#2			3.59 MV/m	4.67 MV/m	2.38 kW				
\V# 3	1.75	0	3.32 MV/m	4.08 MV/m	2.19 kW				
	Temperature of HOM Conector HOM#1 HOM#2 HOM#3 HOM#4 HOM#5								
W#1	5.47 K	8.42 K	10.21 K	9.63 K	11.92 K				
W#2	8.65 K	9.30 K	9.26 K	8.76 K	9.52 K				
W#3	8.26 K	9.21 K	10.90 K	6.13 K	9.71 K				

Main LINAC

2	ś i kowity_power_2.opl (3								
ון	Cav1 P_IN	1.5000 kW	Cav2 P_IN	1.8544 kW					
-	Cav1 P_REF	1.7494 kW	Cav2 P_REF	1.8741 kW					
-	Cav1 P_T	0.1100 W	Cav2 P_T	0.1097 W					
-									
*	Cav1 Eacc	8.0604 MV/m	Cav2 Eacc	8.0654 MV/m					
v	Cav1 Vc	8.3645 MV	Cav2 Vc	8.3697 MV					
=	Cav1 Eacc(Pin)	8.4385	Cav2 Eacc(Pin)	8.3981					
	Cav1 Vc(Pin)	8.7568 MV	Cav2 Vc(Pin)	8.7149 MV					
-									
K	CCG (cav1)	1.11E-7 Pa	CCG (cav2)	2.54E-8 Pa					
ĸ	He level (cav1)	18.22 %	He level (cav2)	17.55 %					
ΤL	He pressure	3.0000	He flow	58.310 m^3/					

マイクロフォニクスの一例

-60

励振側は、電源により300 Hz と50 Hz, 100 Hzのリップルが見られるが、空洞では、50 Hzに 近いモードが強く励振されていた。