Performance of LLRF system

Main Content

- Low Level RF system
- Gain Scanning for Injector
- Experiment on ML cavity
- Summary

Low Level RF System

- Main function of LLRF systems.
- I. Stabilize the RF field (I&Q Feedback) .
- II. Minimize the cavity input power (Tuner Feedback).
- Closed-loop operation (Feedback) is required to stabilize the RF field.
- Requirement: 0.1% RMS for amplitude and 0.1 deg. RMS for phase.

Disturbance suppression: H(s)/(1+K(s)H(s))

Gain scanning (Definition of Gain)

Gain-scanning: Scanning different proportional gain KP and integral Gain KI to find out the optimal gains.

The scanning experiment was carried out at low RF field.

LLRF (2013), F. QIU

4

Gain Scanning (Delay measurement)

■ In order to acquire some priori information about the maximum gain, we have evaluated the loop delay at first due to there is a relationship between the loop delay and the maximum gains.

Loop delay is measured by exciting the OL system with square wave in the DAC output.

Gain scanning (Critical gains)

The Critical gain has measured by the KI=0, KP Scanning.

If the proportional gain is larger than the critical gain, the loop would be oscillated.

Gain scanning (Buncher)

■ High gain is not available for Buncher cavity (NC) due to its large bandwidth (QL=1.1e4).

Gain scanning (Inj. 1)

High gain is available for Inj .1 cavities (SC).

Gain scanning (Inj. 2&3)

High gain is available for Inj .2 (SC) and Inj .3 (SC). *KI=const., KP scanning*

0.1

Stb	Bun.	Inj. 1	Inj. 2	Inj. 3
QL	1.1e4	1.2e6	5.8e5	4.8e5
fo.5 [kHz.]	58	0.54	1.12	1.35

 $\Delta \theta$ [des

0.1

Both KI and KP have an effect for Inj. 2&3.
KI is also significant due to there is an 300 Hz component in the HVPS.

KP= const., KI scanning

• KI=11000

× KI=33000

KI=55000

▲ KI=100000

KI=77000

80

Gain scanning (Conclusion)

Conclusions:

0.08

0.07

0.06

0.05 0.04 0.03 0.03

0.02

0.01

0.005

The proportional gain KP plays an much more important roles in SC cavity and the optimal KP is usually located in the ¹/₂ to ¹/₃ of the critical gains.

The integral gain KI is significant in normal cavity due to the limitation of the critical gains.

• KI=100000, KP=84 (Opt. Gain)

× KI=5000, KP=38

+ KI=5000, KP=63

The performance would be best in the optimal gain case.

The amplitude and phase stability of Inj. 1 and Inj. 2&3 can be 0.01% RMS and 0.02 deg. RMS, respectively.

Experiment on ML (ML1)

The process of the ML1 gain scanning

Here KP is CSS input parameter (not real gain)!

必要な安定度 (0.1%, 0.1 deg.)

Experiment on ML (ML2 IOT)

Performance of the IOT in ML2.

300 W

500 W

開ループ制<u>御</u>

Experiment on ML (ML2)

Performance (June)

必要な安定度 (0.1%, 0.1 deg.)を満足!

Performance (Dec.)

Performance (Screen Monitor@June)

The beam momentum is measured by screen monitor and determined by the peak point of the projection of the screen.

Performance (Beam energy)

Summary

Summary

Construction of the RF system for cERL was finished.

Optimal gains has been determined in the operation for Inj. 1.

- IOT has some oscillation.
- Very good beam momentum.

18

Question?

Thank you very much for your attending

Performance (300 Hz Fluctuation)

The 300 Hz fluc. at Inj2&3 and Buncher cavity during CL/OL operation. This 300 Hz fluctuation would influence the system performance.

The Inj. 1 LLRF system doesn't not has evident dominant components.

Study at cERL (2013)

Performance(300 Hz fluc. suppression)

The Power supply is the main source of the 300 Hz component.
 The RF fluctuation agrees well with the PS fluctuation (suppose 10 deg /HV%, then the 20mV fluctuation in PS will lead to 10 deg×(100×25mv/15V) = 1.67 deg).

Gain scanning (300 Hz suppression)

The 300 Hz fluctuation would be suppressed by higher gains.

Performance(300 Hz fluc. suppression)

The 300 Hz component is suppressed by high gains.

Fluctuation at 300 Hz (Source)

According to current controlling parameter (KI=10, KP=0), the 300 Hz component is suppressed by ~10 dB (~3 times), not enough.

Performance (Vector-sum controlling)

■ We have used the vector-sum controlling for Inj. 2 and Inj. 3 (see page 4&5 in this report).

For vector-sum controlling, the measured vector-sum (M+N) which is seen by the FPGA or DSP is different from the true accelerating voltage which is seen by the beam (m+n).

The calibration (phase or amplitude) error would result of vector-sum error

Performance (Vector-sum controlling)

Suppose the detuning comply with 1 deg. RMS Gauss distribution, similar with the measured result, then the 45 deg. Phase calibration error would result of 0.47% RMS

distribution.

Gain scanning (definition)

Gain scanning: determine the optimal controlling gains (@ 2MV).
Definition of the integral and proportional gains .

- I. FPGA input parameter *KP* and *KI*.
- II. Digital Gain *Kp* and *Ki*.
- III. Analog Gain *kp* and *ki*.
- IV. Real Gains: Aset/(Aset-Ameas.)

Gains	Integral	Proportional
FPGA	KI	KP
Dig.	<i>Ki=KI</i> /2 ¹⁸	$Kp = KP/2^7$
Ana.	$ki=Ki/T_{S}^{(1)}$	kp=Kp
Real	$\approx ki^*G_{op}^{(2)}$	$\approx kp^*G_{op}$

ki&kp (ana.) vs. real gain Aset/(Aset-Ameas.)

1. T_s is FPGA sampling clock period (T_s = 1/162.5e6 in cERL LLRF system) 2. G_{op} is the open-loop gain (Gains from FF to SEL(Fil) during the open-loop operation. For the Inj1 and Inj2&3, $G_{op} \approx 1$ (0 dB).) Study at cERL (2013), F. QIU

ML2 IOT test

The Spectrum of the IOT (50 W to 200 W)

ML2 IOT test

The Waveform in the worst IOT output case (300 W to 500 W)

1500 2000 2500 3000 3500 4000

300 W

0.95 L

500 1000

ML2 IOT test

IOT (High power case)

Experiment on ML (ML2 IOT)

The dominated component in different IOT power

ML2 (Spectrum)

