cERL入射部コミッショニング (4月22-26日)の進捗状況

cERL建設チーム 報告:坂中章悟、宮島司 KEK 加速器研究施設

2013/5/15 ERL検討会

cERLの現状(入射部の完成)

運転準備とコミッショニング

2013/3/12 cERL入射部の放射線申請承認

- 4/8 インターロック自主検査
- 4/10 放射線区域責任者検査
- 4/11 放射線主任者検查

4/15~4/19 電子銃、入射器空洞等のエイジング 4/22~4/26 コミッショニング

Phase 1 コミッショニングでの流れ

機器配置(1)入射部近傍

名称		距離(カソード面から※)	測量の差	測量位置
第1ステアリングコイル	ZHV01	233		
第1ソレノイド電磁石	SLGA01, PMGA01, ZHV02	448.791	-3.626	445.165
レーザー導入チェンバー		626.791		
バンチャー	CBGA01	809.291		
第1スクリーンチェンバー	MSGA01	1020.741		
第2ソレノイド電磁石	SLGA02, PMGA02, ZHV03	1219.791	-2.089	1217.702
第2スクリーンチェンバー	MSGA02	1372.228		

機器配置(2)入射器空洞~診断部入口

- MS3の調整:ZHV4を主に調整 •
- MS4の調整:ZHV6を主に調整 •

Diag.

Line

機器配置(3)入射器診断部

- MS5の調整:ZHV10を調整
- MS6の調整:ZHV11,12を調整

	名称	距離(カソード面から※)
スクリーンモニタ	MSGD01	7856.974
ВРМ	PMGE01	8718.538
四極電磁石	QMGE01, ZHV10	10116.538
四極電磁石	QMGE02	10316.538
スリットスキャナ	SSGE01	10944.539
スリットスキャナ	SSGE02	11094.539
スクリーンモニタ	MSGE01	12034.538
四極電磁石	QMGE03, ZHV11	12634.538
偏向空洞	CDGE01	13084.538
四極電磁石	QMGE04, ZHV12	14034.538
スクリーンモニタ	MSGE02	14884.538
偏向電磁石	BMGE01	15369.774

機器配置(4)入射器診断部BM下流

• MS7の調整:BM, ZHV13を調整

名称		距離(カソード面から※)
偏向電磁石	BMGE01	15369.774
四極電磁石	QMGE05, ZHV13	※1763.425
BPM	PMGE02	※2792.425
スクリーンモニタ	MSGE03	※2972.425
ダンプ上流フランジ		※4545.925

※QMGE05、ダンプ上流フランジは16°ラインとダンプ部のラインとの交点からの距離です。

1日目(4/22)の結果:電子銃からのビームをスクリーンMS1, MS2で観測

- 電子銃電圧:400 kV
- ビーム運動エネルギー:390 keV
- ビーム電流:およそ150 pA(パルスモード:パルス幅1 us、繰り返し5 Hz、マクロパルス 当たりの電荷約30 pC、パルス当たりのバンチ数約1300)
- 調整項目
 - MS1, MS2の中央を通るようにビーム調整。無事にビームを輸送することができた
 - SL1, SL2の応答測定、ステアリングの応答測定を実施。

1日目:ソレノイドスキャンデータ(preliminary data)

- SL1, SL2を変えた時に、ビームサイズがどのように変化するかを測定した。
- キチンとウェストを結ぶことが確認された。
- 水平、垂直でサイズの大きな差はなさそう⇒歪まずに輸送されている。
- 後でシミュレーションと比較する

データ取得・解析:高井さん

2日目(4/23)の結果: 390 keVのビームをスクリーンMS4まで輸送

- 入射器空洞後のスクリーンMS3ではビームを確認
- 診断部入口手前のスクリーンMS4でもビームを確認するが、プロファイルが横に伸びている(5連 QMの残留磁場と思われる)
- 診断部のスクリーンMS5ではビーム確認できず
- MS4以降では、ビーム位置のふらつきも観測された
- 390 keVで通すのは難しそう⇒SRF1で加速して、残留磁場の影響を小さくしてから通すことに変更

3日目(4/24)の結果:入射器空洞#1で加速

- 再現性確認のため、390 keVビームをMS3(空洞出口)まで輸送。ビーム位置を観測。
- 調査の結果、入射器空洞の扇風機を止めると重心位置変動が収まった。
- 空洞#1にパワーを入れる。Eacc = 1.6 MV/mで加速。
- すぐにMS3でビームを確認。位相調整して、最初の設定から+15度でオンクレスト加速。
- MS3手前のステアリングの応答から、ラフに600 keV程度となっていることを確認。加速成功。
- 下流のビームラインを調整して、(一応)ダンプまで輸送成功。
- 入射器空洞後のスクリーンMS3ではビームを確認

ビーム電流は前日とほぼ同じ

4日目(4/25)の結果:入射器空洞3台で約4.8 MeVまで加速

- 再現性確認のため、空洞#1(1.6 MV/m)で加速したビームをMS3(空洞出口)まで輸送。ビーム位置 を観測。再現性は割と良好。
- 空洞#1のEaccを増加。4.0, 7.1 MV/m で加速し、MS3でビームを確認。
- 空洞#1を7.1 MV/mに固定して、空洞#2-3にパワーを入れる。
- 空洞#2-3 Eacc = 1.6, 4.0, 7.1 MV/mで加速に成功。4.8 MeV程度(ただし誤差がまだ大きい)
- 下流のビームラインを調整して、(一応)ダンプまで輸送成功。
- MS7でビーム位置が大きく変動⇒エネルギーが変動している

4日目(4/25)の実施項目

- 入射器空洞エージング、LLRF調整
- ビーム試験Step.3
 - 空洞#1 Eacc = 7.1 MV/mで加速, 空洞#2-3の位相調整
 - 5 MeV程度のビームをダンプまで輸送
- 電子銃電圧:400 kV(ビーム運動エネルギー:390 keV)
- ビーム電流:
 - Faraday cup: 200 pA(パルスモード: パルス幅 1 us、繰り返し5 Hz、レーザー出力: 3 mW)
 - Dump: 110 pA
- 空洞#1 Eacc = 1.6, 4.0, 7.2 MV/m
- 空洞#1(Eacc = 7.1 MV/m) + 空洞#2-3(Eacc = 1.6, 4.0, 7.1 MV/m)

<u>空洞#2-3の位相調整</u>

空洞出口直下のステアリングを周期的に変動させて、空 洞位相を変えながらスクリーン上での軌道変化量を測定。 軌道変化量が最小になるところがオンクレスト位相

横軸∶軌道変動量 縦軸∶空洞#2-3位相

5日目(4/26)の結果: Long pulse (1.6 ms)で約4.8 MeV,約200 nAを達成

- 再現性確認のため、空洞#2-3の最大加速位相を確認。ずれていなかった。
- 16時から、167 pAでの放射線サーベイ。
- Kly #1 Ef ITL: 19時38分、20時08分、20時48分、22時14分(夜に4回)

スクリーンは低電流で観測 ダンプ電流は大電流でも観測

5日目(4/26)の実施項目

- 入射器空洞エージング、LLRF調整
- ビーム試験Step.3
 - 空洞#1 Eacc = 7.1 MV/mで加速,空洞#2-3の位相再確認 ⇒ 特にずれはなし
 - 5 MeVのビームをダンプまで輸送(平均167 pA、レーザー強度6倍)
- 放管による放射線サーベイ (5 MeV, 167 pA) ⇒ 特に問題なし
- 診断ラインの四極電磁石のBeam Based Alignment (BBA) で中心を通した
- ビーム試験 Step. 4: ビーム電流 増強
 - レーザーパルス幅:1 µ s ⇒ 1.6 ms
 - ビーム電流:平均 192 nA(0.03 nA × 6400) ⇒ 施設検査の出力に到達(最大出力の2割)
 - 加速器室内の放射線レベル:200 µ SV/h ⇒ 主空洞のテスト時より十分低いので問題なし。
- 輸送効率向上のための調整
 - Faraday cup (FC)とダンプ電流を比較すると、途中で40%くらい損失しているという値が出た
 - ダンプ電流のノイズが大きいので、オシロスコープのレンジを変更して測定 ⇒ FCとほぼ同じ電流値がダン プでも観測された。40%の損失はなく、ほぼ全てのビームがダンプまで通っていることを確認。
- 5 MeVビームでの Q-scan

コミッショニング中の様子(@ERL開発棟2階制御室)

まとめ(1)

1日目(4/22)

- 電子銃からビーム生成に成功
- 390 keV, 150 pAを生成し、スクリーンモニターMS1, MS2で観測
- ソレノイドとスクリーンの中心を通すように軌道を調整した。
- ソレノイドとステアリングの応答関数測定を実施

2日目(4/23)

- 入射器空洞エージング、LLRF調整、真空インターロック試験を実施
- 390 keVのビームを、入射器空洞下流のスクリーンモニタMS4まで通 過させた。MS5 では確認できなかかった。

3日目(4/24)

- 入射器空洞エージング、LLRF調整を実施
- 390 keVのビーム輸送試験で、入射器空洞用扇風機(計12台)がビーム 変動の原因であることを解明
- 入射器空洞#1をEacc = 1.6 MV/mで用い、約600 keV程度までビームを加 速できたことを確認。ビームをダンプまで輸送。

まとめ(2)

4日目(4/25)

- 入射器空洞エージング、LLRF調整
- 空洞#1,#2,#3 をEacc = 7.1 MV/mで用い、約4.8 MeV 程度までビームを加速 できたことを確認。ダンプまで輸送できた。

5日目(4/26)

- 入射器空洞エージング、LLRF調整
- 空洞#2-3の最大加速位相を確認したが、前日との変化はなかった
- マクロパルスの幅を1 µ s → 1.6 ms (繰り返し5 Hzは同じ)にして電流増強を 行い、192 nA のビームをダンプまで輸送できた。
- 最もビーム損失が大きい点、偏向電磁石横で約200 µ Sv/h のレベル。
- 小電流に戻してから、ダンプまでほぼ全てのビームを輸送できることを確認
- 診断ラインで 5 MeVビームについての Q-scanを実施した

今後、事前検査を経て、5/23に施設検査を受ける(合格すると完成宣言できる)

謝辞

ご支援を頂いてきた共同研究者および協力機関の皆様 に深く感謝致します。また、PFユーザーおよび放射光学 会の皆様に深く感謝致します。KEK機構長・理事をはじ め、ERL計画を推進して下さった皆様にも深く感謝致し ます。

