cERL周回部真空系の進捗状況

谷本 育律,本田 融,野上 隆史,高井 良太,帯名 崇

KEK 加速器第七研究系 2013年2月21日 第69回ERL検討会

Outline

1. Design of the cERL Vacuum System

2. Layout of the Vacuum Components

3. Summary of the Progress

1. Design of the cERL Vacuum System

cERL Vacuum System

Low-impedance Vacuum Components

- need to be developed to accommodate high current (10~100 mA), low emittance (0.1~1 mm•mrad), and short pulse (0.1~3 ps) beams
- adopt gap-less and step-less structures in flanges, monitors, etc. to reduce resistive wall wake fields, aiming at mitigation of BBU and chamber heating

Required Pressure

- around SC cavities: 5×10⁻⁹ Pa by NEG-coated tubes (coated at ESRF) to minimize gas condensation on cryo surface
- in other regions: 1×10⁻⁷ Pa by lumped NEG pumps and sputter ion pumps to mitigate beam-gas interactions (ion trapping and beam loss)

Ready for In-situ Bakeout

- no scrubbing effect expected
 - Incoherent SR (ISR) power: 2.2 W (125 MeV, 100 mA)
 - Coherent SR (CSR) power: 77 W (125 MeV, 10 mA, $\sigma_z = 0.3$ mm)
- no measures needed against the heat load of SR
 - adopt stainless steel (AISI 316L) as main material of beam tubes

High-power Beam Dump

- Max power load: initially 60 kW (6 MeV, 10 mA), finally 600 kW (6 MeV 100 mA)

Dipole Chamber

Special Flange for cERL

Special Flange for cERL (Cu gasket)

Special Flange for cERL (U-tightseal or Helicoflex)

Special Flange for cERL (φ114, straight section)

Cu Gasket

U-tightseal or Helicoflex

Good leak tightness - after 180°C, 24h bakeout, pressure reached 2×10⁻⁸ Pa by TMP

Flange Interface

Pin Hole

Screen Monitor (OTR, YAG)

Beam Position Monitor

Movable Beam Dump

Movable Beam Dump

Movable Beam Dump

Beam Collimator (Straight Section)

Beam Collimator (Arc Section)

cERL Vacuum System

Low-impedance Vacuum Components

 need to be developed to accommodate high current (10~100 mA), low emittance (0.1~1 mm•mrad), and short pulse (0.1~3 ps) beams

- adopt gap-less and step-less structures in flanges, monitors, etc. to reduce resistive wall wake fields, aiming at mitigation of BBU and chamber heating

Required Pressure

- around SC cavities: 5×10⁻⁹ Pa by NEG-coated tubes (coated at ESRF) to minimize gas condensation on cryo surface
- in other regions: 1×10⁻⁷ Pa by lumped NEG pumps and sputter ion pumps to mitigate beam-gas interactions (ion trapping and beam loss)

Ready for In-situ Bakeout

- no scrubbing effect expected

Incoherent SR (ISR) power: 2.2 W (125 MeV, 100 mA)

Coherent SR (CSR) power: 77 W (125 MeV, 10 mA, $\sigma_z = 0.3$ mm)

- no measures needed against the heat load of SR adopt stainless steel (AISI 316L) as main material of beam tubes

High-power Beam Dump

- Max power load: initially 60 kW (6 MeV, 10 mA), finally 600 kW (6 MeV 100 mA)

Calculated Pressure Distribution (without NEG coating)

Calculated Pressure Distribution (with NEG coating)

cERL Vacuum System

Low-impedance Vacuum Components

 need to be developed to accommodate high current (10~100 mA), low emittance (0.1~1 mm•mrad), and short pulse (0.1~3 ps) beams

- adopt gap-less and step-less structures in flanges, monitors, etc. to reduce resistive wall wake fields, aiming at mitigation of BBU and chamber heating

Required Pressure

- around SC cavities: 5×10⁻⁹ Pa by NEG-coated tubes (coated at ESRF) to minimize gas condensation on cryo surface

- in other regions: 1×10⁻⁷ Pa by lumped NEG pumps and sputter ion pumps to mitigate beam-gas interactions (ion trapping and beam loss)

Ready for In-situ Bakeout

 no scrubbing effect expected Incoherent SR (ISR) power: 2.2 W (125 MeV, 100 mA) Coherent SR (CSR) power: 77 W (125 MeV, 10 mA, σ_z = 0.3 mm)
no measures needed against the heat load of SR adopt stainless steel (AISI 316L) as main material of beam tubes

High-power Beam Dump

- Max power load: initially 60 kW (6 MeV, 10 mA), finally 600 kW (6 MeV 100 mA)

Kapton Film Heater

cERL Vacuum System

Low-impedance Vacuum Components

 need to be developed to accommodate high current (10~100 mA), low emittance (0.1~1 mm•mrad), and short pulse (0.1~3 ps) beams

- adopt gap-less and step-less structures in flanges, monitors, etc. to reduce resistive wall wake fields, aiming at mitigation of BBU and chamber heating

Required Pressure

- around SC cavities: 5×10⁻⁹ Pa by NEG-coated tubes (coated at ESRF) to minimize gas condensation on cryo surface
- in other regions: 1×10⁻⁷ Pa by lumped NEG pumps and sputter ion pumps to mitigate beam-gas interactions (ion trapping and beam loss)

Ready for In-situ Bakeout

- no scrubbing effect expected

Incoherent SR (ISR) power: 2.2 W (125 MeV, 100 mA)

Coherent SR (CSR) power: 77 W (125 MeV, 10 mA, $\sigma_z = 0.3$ mm)

- no measures needed against the heat load of SR adopt stainless steel (AISI 316L) as main material of beam tubes

High-power Beam Dump

- Max power load: initially 60 kW (6 MeV, 10 mA), finally 600 kW (6 MeV 100 mA)

2. Layout of the Vacuum Components

Schematic Layout of the cERL

Merger Section

Injector Commissioning (April ~ July 2013)

3. Summary of the Progress

進捗状況のまとめ

- ・JAEA予算での周回部ダクトー式は3月22日納期に向けて製作中
 - (一部、入射器コミッショニングに必要な機器は3月上旬に先行納品予定)
- ・NEGコーティングダクト、可動ダンプ、スクリーンモニタ2台も3月納品予定
- ・残りのスクリーンモニタ20台は来年度製作(担当:高井)
- ・主ビームダンプは今年度設計(熱構造解析)を行い、来年度に製作
- ・ポンプや真空計、制御機器類は概ね調達済み
- ・真空制御系は現在構築中(担当:野上)

電子銃、超伝導空胴、診断ラインのゲートバルブも真空Grのインターロック に入れる方針