Summary of 2nd Cool-down Tests of CERL Injector Cryomodule

1. Low power RF tests (Jan. 29 - Feb. 1)

2. High power RF tests (Feb. 5 - 8, 13 - 15)

History of cool-down / warm-up

低電力RF測定での試験項目

- 冷却後のアライメント変化
- 外部Q值測定(Q_L, Q_{in}, Q_t, Q_{HOM#}, ...)
- 導波管接続での上下インプット・カップラーの位相調整、

P_t, Q_L変化

• 静的熱損失(スタティク・ロス)測定

Cool-down History

Target No. Eiji Kako (KEK, Japan)

QL, Qext Measurement

	No.1 Cavity	No.2 Cavity	No.3 Cavity
QL	1.20 x 10 ⁶	5.32 x 10 ⁵	5.41 x 10 ⁵
Qin-1 (up)	2.40 x 10 ⁶	0.95 x 10 ⁶	0.94 x 10 ⁶
Qin-2 (down)	2.39 x 10 ⁶	1.201x 10 ⁶	1.28 x 10 ⁶
Qt	5.62 x 10 ¹⁰	4.36 x 10 ¹⁰	4.27 x 10 ¹⁰
Q- _{HOM1}	2.90 x 10 ¹⁴	2.48 x 10 ¹³	3.72 x 10 ¹¹
Q- _{HOM2}	8.61 x 10 ¹¹	2.02 x 10 ¹²	1.95 x 10 ¹³
Q- _{HOM3}	1.04 x 10 ¹²	3.34 x 10 ¹²	9.04 x 10 ¹³
Q- _{HOM4}	1.31 x 10 ¹²	2.15 x 10 ¹²	3.31 x 10 ¹²
Q- _{HOM5}	1.02 x 10 ¹²	4.00 x 10 ¹¹	1.58 x 10 ¹²

How the provided and the provided an

Measurement of Input Phase vs Pt

大電力RF測定での試験項目

- 2ms, 5Hz(1%)でのパルスエージング
- 50ms, 2Hz(10%)でのパルスエージング
- CW運転での最大加速電界、X線量/加速電界の測定
- HOMのRFフィードスルーでの発熱観測
- 動的熱損失(ダイナミック・ロス)測定

c E R L 大電力試験スケジュール

2月05日(火)~2月08日(金): 大電力RF試験(4日間)

- 5日(火):#1空洞 エージング
- 6日(水):#1空洞 Qo測定(ダイナミック・ロス)
- 7日(木):#2空洞 エージング
- 8日(金):#2空洞 Qo測定(ダイナミック・ロス)

2月13日(水)~2月15日(金): 大電力RF試験(3日間)

- 12日(火):3連休で175Kまで昇温後、再冷却
- 13日(水):#2空洞 Qo測定(ダイナミック・ロス)
- 14日(木):#3空洞 エージング
- 15日(金):#3空洞 Qo測定(ダイナミック・ロス)

Processing of Cavity -1: (2013, Feb. 5-6)

2013, Feb. 21

Eacc = Z x [Po x Qo]^ 0.5

Processing of Cavity -2 : (2013, Feb. 7-8, 13)

Processing of Cavity -3 : (2013, Feb. 14-15)

Qo measurement of Cavity -1 and Cavity -2

Qo measurement of Cavity -2 and Cavity -3

Temp. measurement of HOM (top, connector)

12:00

14:24

16:48

19:12

21:36

0:00

2:24

Temp. measurement of HOM (top, connector)

Eacc vs. Qo and Po : 3 cavities

6.5 MV/m (1.50 MV x 3 = 4.5 MV) : 6 W x 3 = 18 W 6.0 MV/m (1.38 MV x 3 = 4.1 MV) : 5 W x 3 = 15 W 5.0 MV/m (1.15 MV x 3 = 3.5 MV) : 3.5 W x 3 = 10.5 W7.0 MV/m (1.15 MV x 3 = 3.5 MV) : 3.5 W x 3 = 10.5 W

まとめ

- 3空洞を個別に大電力試験を行い、
 15MV/m(1%, 10%), 8MV/m(CW)の
 加速電界の達成を確認したが、HOMのRF
 フィードスルー・ニオブアンテナ先端での発熱
 により、空洞のQ値は期待値より1桁低かった。
- 3空洞同時運転では、5MeV運転時に30W,
 3.5MeV運転時には10Wの動的熱損失が 予想される。(静的熱損失は12W。)

今後の予定

次回の冷却開始:4月 8日(月)~ 3空洞同時運転:4月16日(火)~19日(金) ビーム加速試験:4月23日(火)~26日(金) その後、昇温へ。

無事に大電力試験を終了することができ、 関係者の皆様のご協力に感謝致します。