

Review of ERL Projects at KEK and around the World

Norio Nakamura for the ERL collaboration team

High Energy Accelerator Research Organization (KEK)

ERL Collaboration Team

High Energy Accelerator Research Organization (KEK)

S. Adachi, M. Akemoto, T. Aoto, D. Arakawa, S. Asaoka, K. Endo, A. Enomoto, S. Fukuda,
K. Furukawa, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma,
K. Hosoyama, M. Isawa, E. Kako, Y. Kamiya, H. Katagiri, H. Kawata, Y. Kobayashi, Y. Kojima,
T. Kume, T. Matsumoto, H. Matsumura, S. Michizono, T. Mitsuhashi, T. Miura, T. Miyajima,
H. Miyauchi, N. Nakamura, S. Nagahashi, H. Nakai, H. Nakajima, E. Nakamura, K. Nakanishi,
K. Nakao, T. Nogami, S. Noguchi, S. Nozawa, T. Obina, S. Ohsawa, T. Ozaki, H. Sagehashi,
H. Sakai, S. Sakanaka, H. Sasaki, S. Sasaki, Y. Sato, K. Satoh, M. Satoh, T. Shidara, K. Shinoe,
M. Shimada, T. Shioya, T. Shishido, T. Takahashi, R. Takai, T. Takenaka, Y. Tanimoto, M. Tobiyama,
K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, K. Watanabe, M. Yamamoto, Y. Yamamoto,
S. Yamamoto, Y. Yano, M. Yoshida

(JAEA)

Japan Atomic Energy Agency (JAEA)

R. Hajima, R. Nagai, N. Nishimori, M. Sawamura, T. Shizuma, S. Matsuba

Institute for Solid State Physics (ISSP), University of Tokyo

I. Ito, H. Kudoh, T. Shibuya, H. Takaki

Hiroshima University

M. Kuriki, H. lijima

Nagoya University

Y. Takeda, Xiuguang Jin, T. Nakanishi, M. Kuwahara, T. Ujihara, M. Okumi

National Institute of Advanced Industrial Science and Technology (AIST)

D. Yoshitomi, K. Torizuka

JASRI/SPring-8 H. Hanaki Yamaguchi University

Outline

- 1. 3-GeV ERL Light Source Project at KEK
- 2. The Compact ERL (cERL) Project at KEK
- 3. Review of ERL Projects around the World
- 4. Summary and Outlook

3-GeV ERL Light Source Project at KEK

KEK Photon Factory (KEK-PF)

PF-AR (6.5 GeV)

• E = 6.5 GeV, C = 377 m

- Beam emittance: 293 nm·rad
- Single bunch, $I_0 = 60 \text{ mA}$

More than 30 years have passed since construction of both rings.

ERL Light Source Project at KEK

Beam Parameters for Operational Modes

3 GeV ERL

XFFI -O

	High Coherence (HC) mode	High Flux (HF) mode	Ultimate (UL) mode	Ultra-Short Pulse (US) mode	XFELO mode
Beam Energy		6 - 7 GeV			
Beam Current	10 mA	100 mA	100 mA	77 μA (typ.)	10 μA
Bunch Charge	7.7 pC	77 pC	77 pC	77 pC	10 pC
Repetition Rate	1.3 GHz	1.3 GHz	1.3 GHz	1 MHz	1 MHz
Norm. Emittance	0.1 mm·mrad	1 mm·mrad	0.1 mm·mrad	-	0.2 mm·mrad
Emittance	17 pm·rad	170 pm rad	17 pm rad	-	15 pm rad
Energy Spread	2×10 ⁻⁴	2×10 ⁻⁴	2×10 ⁻⁴	-	5×10 ⁻⁵
Bunch Length	2 ps	2 ps	2 ps	≤ 100 fs	1 ps

Beam Optics of 3-GeV ERL

Preliminary Optics (from after merger to before dump line)

Emittance growth & energy spread increase due to ISR & CSR effects are negligible for both Ultimate and XFEL-O modes.

Norio Nakamura, IPAC12, May 22, 2012

M. Shimada et al., MOPP019

Tentative Layout of 3-GeV ERL

Assumptions:

- Beam energy
 - Full energy: 3 GeV
 - Injection and dump :10 MeV
 - XFEL-O: 6-7 GeV
- Circumference : ~ 1600 m
- Main linac
 - Eight 9-cell cavities in a cryomodule
 - 28 cryomodules (224 cavities)
 - Cavity acc. gradient : 13.4 MV/m
 - Triplet QMs between cryomodules
 - Total length : ~ 470 m
 (average acc. gardient : 6.4 MV/m)
- TBA cells for ID's
 - 22 x 6 m short straight sections
 - 6 x 30 m long straight sections
- 300-m long straight section

Simulation of XFEL-O (6 GeV)

Potential of 300m Long Straight Section

Potential of 300-m long straight section (E=3GeV) :

- (1) 300-m Undulator Spectral Brightness 10²³ 10²⁴
- (2) EEHG FEL including generation of attosecond VUV/X-ray pulses
- (3) Harmonic Lasing of XFEL-O

Light Source Performance

The Compact ERL (cERL) Project at KEK

Compact ERL (cERL) Project

Purposes of the compact ERL

- Demonstrating reliable operations of our ERL components (guns, SC-cavities, ...)
- Demonstrating generation and recirculation of ultra-low emittance beams at high currents
- 1st target : 1 mm·mrad for 10mA @ 35 MeV

Commissioning is scheduled to start in 2013.

S. Sakanaka et al., MOPPP018

Injector Design

Simulation result from the gun to just after the main linac.

1st goal (1 mm·mrad for 10 mA) is achievable.

T. Miyajima et al., MOPPP017

6.84, 7.53, 7.07 MV/m

29.9, -9.8, -10.0 degrees

Eacc of 1st, 2nd, and 3rd SC cavity

Offset phase of 1st, 2nd, and 3rd cavity

Lattice and Optics of cERL

Betatron and dispersion functions (from after main linac to beam dump)

M. Shimada et al., MOPP019

Laser Compton Scattering Experiment

Nondestructive measurement of isotopes by LCS γ -rays at the cERL

3-year R&D program of JAEA was funded from MEXT (FY2011-2013).

Lattice and optics of the LCS section is being designed. A laser system including a laser cavity is being developed.

Photocathode DC Gun #1 at JAEA

8-hour operation at 510 kV with a segmented ceramic insulator

R. Nagai et al., Rev. Sci. Instrum. 81 (2009) 033304

HV processing with cathode electrode and NEG pumps in place

Photocathode DC Gun #2 at KEK

Target pressure : 1x10⁻¹⁰ Pa

(to preserve the NEA state on the cathode)

- High voltage insulator
 - Segmented structure
 - Special Al₂O₃ material (TA010, Kyocera)
- Low outgassing system
 - Titanium chamber, electrode, guard rings
 - Total outgassing rate: ~1x10⁻¹⁰ Pa·m³/s

(actual measurement)

- Main vacuum pump system
 - 4K Bakeable cryopump
 - > 1000 L/s, for CH_4 , N_2 , CO, CO_2 @1x10⁻⁹ Pa (actual measurement)
 - NEG pump
 - > $1x10^4$ L/s, for H₂ (design value)
- 600-kV HV Power Supply system

Laser System

Laser system

- 1.3GHz Nd:YVO4 oscillator
- Yb photonic-crystal-fiber amplifier
- SHG with an external cavity
- Shaping system

Specifications

- 532 nm, 2.3 W on cathode for 10 mA
 → 5W(532nm), 25W(1064nm) at laser room
- 32 ps pulse duration
 → stacking of eight 8-ps pulses

Achievements

- 38 W(1064 nm) at 1.3 GHz with a 1-stage fiber amplifier
- 70 W(1064 nm) at 1.3 GHz with a 2-stage fiber amplifier
- SH generation and pulse stacking
- Operation of 10 mA or more is promising.

Y. Honda, TUPPD056

Yb Fiber Amplifier System

SC Cavities for Injector (1)

HOM pick-up

Courtesy: E. Kako, K. Watanabe

HOM Coupler

SC Cavities for Injector (2)

Improved RF feedthroughs in HOM couplers increased accelerating gradient (cERL specification: E_{acc} > 11 MV/m).

All the RF feedthroughs were replaced by Type-II'm.

Please see E. Kako et al., WEPPC012, WEPPC015 for details.

Courtesy: E. Kako

RF conditioning of input couplers

Assembly of cryomodule

SC Cavities for Main Linac (1)

9-cell Cavities

HOM Absorber

Cryomodule design

Input coupler Norio Nakamura, IPAC12, May 22, 2012

SC Cavities for Main Linac (2)

Results of final vertical tests

- *E*_{acc} of higher than 25 MV/m could be achieved in both cavities.
- Cavities satisfied cERL specification (Q₀ > 10¹⁰ at 15 MV/m)
- Onsets of X-ray were 14 MV/m and 22 MV/m for the cavities #3 and #4, respectively.

• Cavities are dressed with Helium jackets and waiting for installation into cryomodule.

Courtesy: K. Umemori

1.3 GHz CW RF Sources

300kW CW Klystron for injector SCC

30kW CW Klystron for injector SCC

30kW CW IOT for main SCC

Courtesy: T. Miura

20kW CW IOT for buncher

Liquid-Helium Refrigerator

Overview of the system

Courtesy: H. Nakai

3000L liquefied helium storage vessel

2K cold box and end box

TCF200 helium liquefier/refrigerator

Magnet/Vacuum/Monitor

Bending magnet

Quadrupole magnet

Zero-gap Flange

Stripline BPM with glass-type feedthrough

Screen monitor

Slit for emittance measurement

Courtesy: K. Harada, Y. Tanimoto, T. Honda, T. Obina, R. Takai

Radiation Shield for cERL

Construction of the radiation shield is on going and will be completed this autumn.

Road Map of ERL Projects

Courtesy: H. Kawata

ERL Projects around the World

Jefferson Lab

Beam Parameters	Specification	Achieved	Electron gun power supply
Energy [MeV]	145	160	Injector-2nd Recirculation Arc
Peak Current [A]	240	400	1/4 Cryomodule IR Light To Experimental Labs
$\sigma_{\!t}$ [ps] at wiggler	0.20	0.13	Output Coupler Mirrors
$\sigma_{\!\scriptscriptstyle \Delta E}$ [%] at wiggler	0.4	0.3	NV Suppresse
$\epsilon_{x,y}$ (rms) [mm-mrad]	30	7	UV Light To Experimental Lab 4
ϵ_{z} (rms) [keV-ps]	65	80	weinschues
 IR FEL High power FEL Beam dynamics UV FEL High gain near 7 3rd harmonics a THz source 	(>10kW) studies 700 and 400 nm at 10eV	A Residuation of the second se	But we were with a set of the set

Jefferson Lab

BINP

ALICE @ Daresbury Laboratory

Gun Ceramic Change(230→325kV)

5-GeV ERL @ Cornell University

Cornell ERL Project

- 5-GeV ERL light source as extension of CHESS
- R&D for realizing the ERL X-ray source
- PDDR(Project Design Definition Report) ready for submission

5-GeV ERL @ Cornell University

Injector Prototype @ Cornell University

Achievements:
1) Max. DC-gun voltage: 440kV
2) Max. beam current: 52mA with GaAs (world record for photocathode guns)
3) 8-hour operation at 20mA with CsK₂Sb
4) Min. norm. emittance at 80pC: 0.7 mm⋅mrad with core norm. emittance : 0.3 mm⋅mrad
5) Largest injector-coupler power: 60kW
6) Largest SRF-cavity voltage: 13MV/m

Achieved beam sufficient for an ultra-bright X-Ray ERL

BERLinPro @ HZB

IHEP-Beijing

500 kV DC-gun (with GaAs cathode as the 1st test) design is completed, and is funded by IHEP's innovation program, its construction is started.

- The 1st 1.3 GHz 9-cell ILC type SC cavity (with large grain and low loss) has obtained 20 MV/m; the preliminary design of CW 7-cell cavity is done.
- The conceptual design of the 35MeV-10 mA TF is almost completed, and is in the further improvement.

Peking University

Plan view of Peking University Superconducting ERL Test Facility(PKU-SETF)

To demonstrate energy recovery, ERL-based FEL and radiation sources and ERL key technologies (DC SRF injector & Acceleration module)

eRHIC @ BNL

ERL Test Facility @ BNL

ERL Test Facility at BNL

- Max. energy : 20 MeV
- Max. current : 0.5 A CW
- 704 MHz SRF gun
- 704 MHz 5-cell SC cavity
- Study items :
 - HOMs and BBU
 - Emittance growth
 - Halo
- First beam from SRF gun : September 2012
- First ERL beam : May 2013

SRF gun

LHeC @ CERN

Advantages of Linac-Ring option :

- (1) Higher luminosity potential up to 10³⁴ cm⁻² s⁻¹
- (2) Decoupling from LHC operation/infrastructure
- (3) Higher polarization degree of electrons
- (4) Reusable SC linacs for other projects

ERL configuration for Linac-Ring option

Draft CDR completed 2011, TDR by 2014, first beam by 2022

Summary and Outlook

ERL-based Light Source Project at KEK

- 3-GeV ERL with 6-7 GeV XFEL-O
- Possible further upgrades in 300-m straight section

Combination of a multi-GeV ERL and an FEL seems promising.

Compact ERL project at KEK

- 35 MeV single loop for 1st commissioning in 2013
- R&D and construction in progress

Target specifications of key components are being satisfied.

ERL Projects around the World

- 10 100 MeV ERLs established as high-power IR and THz sources
- R&D toward future VUV to X-ray light sources and colliders
- Significant progress in ERL technologies and operational experiences Encouraging us to work on further development for future ERL projects.

ERL2011 Workshop at KEK

Thank you for your attendance in spite of the difficult situation after the Great East Japan Earthquake.

- The 50th ICFA Advanced Beam Dynamics Workshop on Energy Recovery Linacs
- Venue: KEK, Tsukuba, Japan
- Date: October 16 21, 2011
- Number of Participants : ~120

Committee for Future Accelerators / High Energy Accelerator Research Organization, KEK / Japan Atomic Energy Agenc Particle Accelerator Society of Japan / The Japanese Society for Synchrotron Radiation Research

Acknowledgements

Special thanks to

- S. Benson (J-Lab) and his colleagues
- N. Vinokurov, G. Kulipanov (BINP) and their colleagues
- S. Smith (Daresbury) and her colleagues
- G. Hoffstaetter (Cornell. U) and his colleagues
- A. Jankowiak (HZB) and his colleagues
- S. H. Wang, J. Q. Wang (IHEP) and their colleagues
- L. X. Liu (Peking U.) and his colleagues
- V. Ptitsyn, I. Ben-Zvi (BNL) and their colleagues
- F. Zimmermann (CERN) and his colleagues

Thank you for providing material for my presentation.

Thank you for your attention.