cERL 2セル空洞のまとめ

2012年1月23日 技術検討会 2012年2月24日 第59回 ERL検討会

渡邉

1

<u>入射器用空洞の開発項目</u>

・空洞形状: 入力カップラーの結合度、HOM の染み出し、

高次モードの周波数(HOM couplerのBroadband特性も考慮する)

- ・空洞製作:幾何学的欠陥の抑制、品質評価・空洞補修。
- ・表面処理: 電界強度、フィールドエミッションの抑制、Arガスパージ置換。
- ・HOM damping: HOM coupler → RF設計、フィードスルーの開発

電気的歪みを考慮したHOM couplerの配置

- ・電気的調整: 周波数調整、フィールドモニター用アンテナの結合度
 HOM couplerのチューニング
- ・入力カップラー: 大電力、結合度、電気的歪みを考慮したcouplerの配置
 ・クライオモジュール: 冷却能力、冷却方式

など。

<u>Outlook</u>

Contents

HOM coupler (2007~2011)

・HOM coupler、フィードスルーの設計

•HOM 測定

2セル空洞 (2010~2012)

・空洞製作後の工程

- ・LLRF (周波数調整、Qext など)
- ·光学検査、補修、表面処理
- ・単体の性能測定(HOM pick-upあり)

・高圧ガス耐圧試験

まとめ

・3空洞の最終状態(連結化前)

<u>はじめに:入射器クライオモジュールの構成</u>

※HOM couplerの設計、空洞の受け入れ検査からモジュール運転を想定した 単体測定までを担当した。 HOM couplerの設計

HOM coupler (1): Problem for CW operation

ベースデザイン

: TESLA-like HOM coupler (パルス運転)

N-type with Al2O3 window (Kyocera)

<u>CW運転(Duty=1)</u>で用いると(たて測定、HOM pick-upあり)、

(1)HOM pick-upが発熱(約4000 A/m) ~ 14 MV/m、<u>He level (1)</u>
 (数秒維持後、常伝導に転移する。フィードスルーの熱伝導。)

(2)冷却条件が悪いと外導体が発熱 ~ 4 MV/m、<u>He level (2)</u>
 (サーマルアンカー無しの場合。RFロスと冷却パスのバランス。)

<u>※TESLA-like空洞の構成では、HOM couplerの発熱が原因で、</u> <u>15MV/m(CW)の運転は出来ない。</u>

HOM coupler (2): Design of HOM coupler

HOM coupler (3): Calculation by HFSS

(2) High pass filter + Coupling loop antenna

(3) High pass filter + Coupling loop antenna

+ Notch filter + Pick-up probe

(4) HOM coupler + single or two cell cavity

HOM coupler (4): Broadband performance

HOM coupler (5): Calculation and measurement of Qext and Surface Current

測定 TESLA銅空洞(シングルセル)

Cell shape : TESLA

Beam pipe = 78 mm

Probe gap = 0.5 mm

Probe Diameter = 12 mm

計算 Cell shape : STF end cell

Frequency

(MHz)

L:1599.6

Beam pipe = 84 mm

mode

TE111

Probe gap = 0.5 mm Probe Diameter = 12 mm

Material and surface : perfect conductivity

STF

1.5:L-type

1.2×10^5

Loop (Qext)

30°回転

2.8 × 10^4

mode	Frequency	Loop (Qext)	STF
	(MHz)	30 [°] 回転	1.5:L-type
TE111	L:1670.6	5.0 ×10^4	1.8×10^4
	H:1671.6	1.5 ×10^4	
TM110	L:1834.9	3.9 ×10^4	1.9 ×10^4
	H:1835.1	1.5 ×10^4	5.1 ×10^4
TM011	2426.2	3.2 ×10^4	4.1×10^4
Insert leng	Ith	27.5 mm	29.5 mm
Bandwidth	Qext>2x10 ¹¹	±2.6 MHz	±3.9 MHz

H:1603.9 9.7 × 10^4 3.1 × 10^3 L:1836.7 2.3 × 10^3 TM110 5.4 × 10^3 H:1837.9 6.3 × 10^3 4.4×10^{4} TM011 2328.4 8.2 × 10^3 2.3 × 10^4 Insert length 30 mm 31 mm Surface current on 2000 A/m 4000 A/m Probe at 15 MV/m

※空洞周波数の変化:常温→2K + 2.16 MHz

HOM coupler (6): Measurement of Notch frequency for Nb models

 ERL 2-cell cavity(高圧ガス対応品): Loop-type HOM coupler Fnotch 測定

 個数:15機(5機×3空洞)

 測定時間および受け入れ日: 2010年5月31日 13:00~14:30@KEK-STF

 測定方法: 同軸管測定

 目標値:1300MHz±10MHz (公差±0.1~0.2mm)

No.	刻印	ノッチ周波数
1	ME-6-I1	1306 MHz
2	ME-6-I2	1307 MHz
3	ME-6-H1	1304 MHz
4	ME-6-H2	1305 MHz
5	ME-6-H3	1306 MHz
6	ME-7-I3	1304 MHz
7	ME-7-l4	1301 MHz
8	ME-7-H4	1302 MHz
9	ME-7-H5	1299 MHz
10	ME-7-H6	1307 MHz
11	ME-8-15	1304 MHz
12	ME-8-16	1298 MHz
13	ME-8-H7	1303 MHz
14	ME-8-H8	1302 MHz
15	ME-8-H9	1303 MHz

HOM coupler (7): Qext measurement by #2 cavity

Dummy coupler付きで測定。 Dummy couplerが無いと、電磁場が歪む。 軸上の電界分布の測定(金属球)

Mode	Frequency [MHz]	Qext, all couplers	ME5-I1	ME5-I2	ME5-H1	ME5-H2	ME5-H3
TE111-1	L: ?????						
	H: 1595.098	508	1120	7090	11300	1460	6290
TE111-2	L:1630.145	292	1420	1090	839	2080	8160
	H:1642.807	436	2450	3230	782	12300	4680
TM110-1	L:1799.458	7320	183000	37900	17800	24400	131000
	H:1801.098	3240	24600	44300	6420	23000	21500
TM110-2	L:1883.132	10900	79600	79400	23000	147000	79600
	H:1884.692	37100	651000	142000	287000	70300	1480000
			-	-			-
TM011-1	2286.072	894	3970	3840	11300	13600	4570
TM011-2	2316.156	1120	2120	3570	17700	10200	4700

HOM coupler (8): Qext measurement by #2 cavity

※ダンピングが悪いモードがあることの原因:

空洞周波数とHOM couplerのブロードバンド特性の不一致。

HOM Couplerの配置による効果(上流側の3機の配置が悪い)。

HOM coupler (9): Field distribution of HOMs (#2 cavity)

HOM coupler (10): Field distribution of HOMs (#2 cavity)

HOM coupler (11): Polarize direction measurement for cavity BPM

HOM coupler (12): Polarize direction measurement for cavity BPM

HOM coupler (13): Polarize direction measurement for cavity BPM

TM110-1

X-dipole (1799 MHz) \Rightarrow -13 deg Y-dipole (1801 MHz) \Rightarrow 79 deg TM110-2

X-dipole (1883 MHz) \Rightarrow 9 deg Y-dipole (1884 MHz) \Rightarrow 99 deg HOM coupler (14): Conclusion

・TESLA-like空洞のHOM couplerをベースにCW用に改造した。
 表面電流値:半分まで低減。(ロス:1/4)
 HOM Qext、Notch filter:劣化無し。

・HOM damping: TM110のダンピングが悪い。

HOM couplerのブロードバンド特性とモード周波数の不一致によるもの。

・Dipole modeの偏極方向

下記の通り、2セル空洞のTM110は空洞BPMとして使えそうなモードである。

TM110-1	TM110-2
X-dipole (1799 MHz) ≒ -13 deg	X-dipole (1883 MHz) ≒ 9 deg
Y-dipole (1801 MHz) ≒ 79 deg	Y-dipole (1884 MHz) ≒ 99 deg

20

フィードスルーの設計

Feedthrough (1): Transmission performance of Each models

ILC, ERL(AI_2O_3): KEK

VSWR

Broadband performance (VSWR) window only

VSWR

Feedthrough (2): Kyocera N-R (Regular probe, call Type 0 Normal)

ベース: Kyocera N-R アンテナ:ニオブ 接合方式:螺子式 高周波窓:アルミナセラミック 外導体材料:Kovar(磁化する) 内導体材料:Kovar(磁化する) フランジ材料:SUS316L

9-cell で通常使用している組み合わせ。

たて測定の際、下図の様に銅製サーマルアンカーを 取り付ける。アンカーとフィードスルー間にはインジウ ムシールを用いる。アンカーは2Kから取る。

※6mm×1t ×10ライン(断面積 60 mm²)

Type 0: Normal

Feedthrough (3): Kyocera N-R (Type 0 Modify, Type 1)

Type 0: Modify

単純にインジウムブロックを用いて 内導体とニオブアンテナの接触面積を増やした。 <u>ニオブアンテナとフィードスルーを別々に表面処理・洗浄が行える。</u> Type 1: Mo, Brazing

内導体を熱伝導特性の良い材料に変え、接合方式をロウ付けにし、一体化した。

<u>ニオブアンテナ部の表面処理の手順、ロウ材染み出し部の除</u> <u>去が問題。</u>

Feedthrough (4): Kyocera N-R (Improvement, Type 2)

内導体:熱伝導特性の良い材料に変更 外導体:高周波窓周辺の外導体材料を銅に変更、

また、Nコネクター接続部をSUS316Lに変更 接合方式: ロウ付け

・ロウ材染み出し部の除去

・表面処理領域の改善(ニオブアンテナの根元まで)

28

Feedthrough (5): Remove a brazing material at inner conductor

発熱の原因(ロウ材の染み出し部)と考えられる対策(ロウ材の除去)

ロウ材の染み出し部分を除去後の様子。

ルーターを使用。内導体のMo表面に流れたロウ材も機 械研磨で出来る限り除去した。

あとは、Nbアンテナの根元までCPを行い、洗浄する。

<u>Feedthrough (6): フィードスルーの性能試験</u>

液体ヘリウムの液面とフローレートを制御して、空洞上部の冷却条件を 悪化させた状態を作って、CWで維持可能な電界強度を測定している。 (CHECIAのような空洞単体でよこ測定を行う設備がないため) 空洞全体がヘリウムに浸った状態でエージングを行った後、 <u>※ヘリウムの液面 vs 維持可能な電界強度の測定</u>

アンカーにヒーターを設置しているので、ビームチューブ周りの温度もある 程度制御できる。<u>温度センサーとHOM pick-upからの出力電力の変化(Qext)</u> からフィードスルーの発熱状況を評価した。

Feedthrough (7): Results

Туре	内導体	外導体	高周波窓	接合方式	コネクタ	維持可能な電界強度 Eacc (He外 at 2K)
Type 0 Normal	Kovar	Kovar	Al ₂ O ₃	螺子式	メス	13 MV/mで発熱。
Type 0 modify	Kovar	Kovar	Al ₂ O ₃	螺子式 (インジウムあり)	メス	25 MV/mで発熱。
Type 1	Мо	Kovar	Al ₂ O ₃	ロウ付け (ロウ材染み出し)	メス	ロウ材染み出しあり 5~12 MV/m (60 mm2)で発熱。 ロウ材染み出し除去 7.5 MV/m (36 mm2)で発熱。 ※表面状態、表面処理に課題。
Type 2	Мо	Cu SUS316L	Al ₂ O ₃	ロウ付け	メス	> 28.2 MV/m (36 mm2) > 31.9 MV/m (60 mm2) で発熱しないことを確認。 ブレード線の本数を変えた。

<u>Feedthrough (8): 問題点</u>

勘合部の破損(タイプ1、内導体材料(Mo)、勘合部内径(1mm)について

状況: 液体窒素にてサーマルサイクル試験×2回、

超伝導空洞実機へ取り付けて低温試験(2K、High field)の実施。

フィードスルーを空洞から取り外し、勘合部の目視検査を行ったところ、勘合部の膨れが見られた。 次回の測定のためにピンセットなどで位置の修正を行ったところ、上図のように勘合部の根元から内導体が 折れたものがあった。

<u>Feedthrough (9): 勘合部の割れ具合</u>

上図は、タイプ1(Mo)の10個の様子、現状では勘合部の根元から折れ たものは2個ある。ピンセットなどで膨れを修正したものについて、折れて はいないが修正中に"ペキ"という異音が聞こえたものが数個あった。 この状態で超音波洗浄を行うと、ピンが取れたものもある。

左図は内導体が<u>Kovar</u>の通常のN-R変則型である。勘合部に膨れは見 られるが、均一に変形しており、膨れの修正を行ってもこれまで、破損は 見られなかったそうである。こちらも勘合部の内径は1mmである。 通常は、Φ1.65mm である。

33

<u>Feedthrough (10): 対策</u>

ピンの破損に対して、 オスピンにして対応。

RFケーブルとの接続は

L-アダプタ(メスーメス)を用いることで 対応する。

現在手配中。必要に応じて、連結化の際、付け替える。

Feedthrough (11): 熱伝導率(参考)

材料	熱伝導率 [₩/(m⋅K)]	熱伝導率 [W/(m⋅K)]	
	常温	4.2 K	
銅	401	840	
SUS 316L	16.7	0.26	
Kovar	17		
ニオブ	53.7	27	
モリブテン	138	66	
単結晶サファイヤ	42	42 ?	
アルミナ	24 - 32	24 – 32 ?	

参照:真空ハンドブック、低温ハンドブック、理科年表、メーカーのカタログより

Feedthrough (12): Conclusion

- ・Kyocera N-RのRFデザインとTESLA, XFEL の材料構成を採用し、高熱伝導特性を 持つN-typeフィードスルーの製作を行った。
- ・製作後の問題の対策、表面処理手順の開発を行った結果、耐電圧特性が向上した。
 従来品: 13 MV/m → 新規モデル: > 32MV/m (He外)
 (Current 2.5倍、ロス 6.25倍)
- ・勘合部の割れのような材料特有の問題については、ピン形状を変更することで 対応する。

36
About 2-cell Cavity

Cavity(1) fabrication

2011年3月までに、高圧ガス対応2セル空洞3台が製作された。 (#3~#5空洞: ME-06, ME-07, ME-08)

2011年4月~12月

- ・受け入れ検査
- ·表面処理
- ・単体の性能試験
- ・フィードスルーの開発(2011年6月~12月)
- 2012年1月~3月

・Heジャケット溶接 ・モジュールアセンブリ

2012年4月~

・冷却、モジュール運転

Frequency	1.3	GHz
Number of cell	2	
R / Q	205	Ω
Operating Gradient	14.5	MV / m
Number of Input Coupler	2	
Coupler Power	167	kW
Coupler Coupling Q	3.3 x 10 ⁵	
Number of HOM coupler	5	
Operating Temperature	2	k

Cavity(2): Surface treatment, RF tuning and Test

Feature: Combination of mechanical grinding and light EP <u>without re-pre tuning</u>, <u>Bulk EP and Vacuum furnace heat process</u> for Cavity Repair.

Cavity(3): History of Frequency Tuning

	#3 cavity [MHz]	#4 cavity [MHz]	#5 cavity [MHz]
受け入れ	<u>1301.184 (472.5mm)</u>	<u>1297.274 (476.0mm)</u>	<u>1297.564 (476.5 mm)</u>
プリチューニング	1298.725 (470.5mm)	<u>1298.200</u> (476.5mm)	<u>1298.247 (</u> 477.0mm <u>)</u>
Bulk-EP(105um)+ アニール後	1297.831	1297.284	1297.384
Final EP	1298.091	1297.560	1297.665
VT stand (常温、真空)	(20um研磨)	(20um研磨)	(20um研磨)
1 st VT at 2 K	<u>1299.947</u>	<u>1299.433</u>	<u>1299.518</u>
After VT	1297.728		
VT stand (常温、大気圧、窒素)			
再プリチューニング	1297.661→	1297.135→	1297.255
(常温、大気圧、空気)	1297.195 (Repairあり)	1297.488 (Repairあり)	なし
再プリチューニング2	1297.195→		
	1297.481 <u>(469.0mm)</u>		
Final EP、VT stand	1297.620	1297.650	
(常温、真空)	(30um研磨)	(30um研磨)	(10um研磨)
2 nd VT at 2K	<u>1299.533</u>	<u>1299.532</u>	<u>1299.427</u>
再チューニング3		1297.280 (Repairあり) →	
		1297.420 <u>(476.5 mm)</u>	
Final EP、VT stand		1297.660	
(常温、真空)		(20um研磨)	
3 rd VT at 2K		<u>1299.517</u>	

Cavity(4): Set-up of Frequency Tuning

Cavity(5): Example, Frequency Tuning of #3 cavity

Cavity(7): Field distribution on Beam axis

Cavity(8): Qt measurement for field Monitor and Feed-Back

Target value : 5 x 10^10 (26.2 mm) Result: #3: Qt = 5.8 x 10^10 #4: Qt = 5.0 x 10^10 #5: Qt = 4.2 x 10^10 <u>±0.2~0.3mmの範囲内</u>

Cavity(9): Qin measurement by Dummy Input couplers

Coupler tip on the Beam axis [mm]

アンテナ先端がビーム軸から 35mmあたりで、目標値に達する。

Qin = 3.3×10^5 / Coupler

46

Cavity(10): Optical Inspection and Repair

観察箇所

Cavity(11): Optical Inspection and Repair: #3 Cavity

Cavity(12): Optical Inspection and Repair: #4 Cavity

Cavity(13): Optical Inspection and Repair: #5 Cavity

No Repair for #5 cavity.

Cavity(14): Process of Surface treatment

Cavity(15): Anneal

<u>Cavity(16): ニオブアンテナの準備</u>

この粗さがエミッターにならないか?

粗さは表皮抵抗の増加につながるので、

研磨の追加工は必要ではないか?

フィールドエミッションの対策の一つ、HOM pick-upの耐電圧特性改善のために、Nbアンテナの表面粗さを小さくした。その後、CP を行う。

Cavity(17): Vacuum seals

真空シール材 ・アルミ合金製ヘキサゴン ・ヘリコフレックス(Sn鍍金) ・ヘリコフレックス(In鍍金) ・インジウムシール

Key

・微粒子の発生頻度:フランジ面における鍍金の残留
シール材からの汚染
・洗浄によるシール材へのダメージ

・組み立て工程が失敗した場合、どのような
工程で対応するか? 何処まで戻るか?
真空パーツ付き(シール材あり)でHPRは可能か? (ヘキサゴン:可能、Sn:実績あり、MHI-08、ERL#3)

Cavity(18): Vacuum seals

Sn鍍金ヘリコ:使用済み 常温のみ

Sn鍍金ヘリコ 超音波洗浄 60min

In鍍金ヘリコ:新品

In鍍金ヘリコ 超音波洗浄 60min

鍍金が剥がれた。

※ヘキサゴンは変化無し。

Cavity(19): Vacuum seals

結果

・ヘキサゴン:ダストなし。

・Sn鍍金ヘリコ:ワイピング回数に応じて、黒い粒子状のダストは減 少した。最後は、剥がれた鍍金の部分?が支配的となった。

・In鍍金へリコ:ワイピングを4回やったが、黒い粒子状のダストは無く ならなかった。Inは軟らかいのでベンコットで擦ると削れるから?

Cavity(20): Cavity Assembly

Key

: 空洞内部の表面状態 (<u>EP</u>、リンス、HPR、作業環境・手順)

:真空シール(微粒子の発生)

: ニオブアンテナの表面状態 入力(1)、HOM用(5)、Monitor(1) (機械研磨、<u>CP</u>、洗浄)

Cavity(21): from Vertical test to Pressure test for He jacket

・Cavity をVTスタンドへ移動した後、
(1) 排気系の接続
(2) 加速モードに対するHOM couplerのtuning
<u>(3) サーマルアンカーの取り付け</u>
(4) 温度センサー、RFケーブル などの取り付け
(5) クライオスタットへ移動
(6) 冷却 常温 → 4K
<u>(7) 冷却 4K → 2K :Rres、Q value</u>
(8) Processing (2K High field)
<u>(9) He level vs CWで維持可能な電界強度</u> ●
発熱箇所の同定 など
(10) 昇温、真空封じでの切り離し
<u>(11) Ar ガスパージ、輸送用フランジへ付け替え</u>
<u>(12) ヘリウムジャケット溶接、耐圧試験</u>
(13) 連結化、モジュールアセンブリ 🗲
性能劣化なしでモジュール化できるか?

Cavity(21): HOM coupler tuning for VT

Cavity(22): Thermal anchor and Thermo-sensors

Cavity(23): Cool down and Rres (1)

HOM pick-upのニオブアンテナの表面処理が異なる。 CPの面積、時間の変更。ロウ材の除去により改善した。

表面処理工程の変更(主にリンス工程)がある。 HOM pick-up: パーツごとの表面処理が可能。

61

Cavity(24): Cool down and Rres (2)

Type 1の失敗から学習したことを生かした。

(CPの面積、時間、ロウ材の除去)

<u>#3 2nd では、組み立て中に排気系の操作を誤り、リークさせた。真空パーツ付きでHPR、再組み立てを行った空洞。</u>

Test	フィードスルー	Rres [nΩ] (field)
#1 cavity 04/Feb/2010	Without	38.0 (3.63)
#2 cavity 14/Oct/2010	Type 0 (normal)	38.6 (3.56)
#3 cavity 1st June/08/2011	Type 0 (modify)	31.1 (3.04)
#4 cavity 1st (will install CM) 20/Sep/2011	Type 1 (1 st test.)	47.8 (3.16)
#5 cavity 1st (will install CM) 04/Oct/2011	Type 1 (表面処理改善)	40.0 (3.13)
#3 cavity 2 nd 01/Nov/2011	Type 2 (ロウ材部の除去など)	34.5 (1.43)
#4 cavity 2 nd 15/Nov/2011	Туре 2	30.3 (1.65)
#5 cavity 2 nd 29/Nov/2011	Туре 2	35.5 (0.95)
#4 cavity 4th 13/Dec/2011	Type 1 (ロウ材部の除去など)	34.4 (1.57)

Cavity(25): Estimation of Qo value in case of VT setup

HFSS (固有値モード)を用いて、たて測定の際取り付け るSUS製ブランクフランジのQo値への影響を計算した。

SUS at 2K \rightarrow 2.22 × 10⁶ S/m

常温→1.1×10⁶ S/m

ニオブ at 2K \rightarrow 3.34 × 10¹9 S/m

評価方法

・各ポートの境界面をSUSに変えたときの、Qoの変化 から、各SUSフランジによるRresの値を計算する。

※ Rs = G/Q : G=287.8Ω、Qo=計算値

$$Rres(P1) = 0.95 n \Omega$$

 $Rres(P2) = 0.95 n\Omega$

 $Rres(B1) = 10.35 n\Omega$

Rres(B2) = 10.66 nΩ(キャップ形状)

→B2端板形状のとき Rres(B2)= 31.56 nΩ

:キャップ形状とすることで20.9 n Q 小さくなる。

※すべてニオブのとき: Qo=2.05 × 10¹⁰ (Rres=14.04 n Ω) ※すべてのフランジがSUSのとき: $Qo=7.73 \times 10^9$ (Rres=37.21 n Ω) 37.21-14.04 = $23.17 n \Omega$ (SUSフランジのロス) 63

Cavity(26): Amount of Frequency Change by cool down and Accelerating field

Cavity(27): Qext of HOM couplers for accelerating mode

Cavity(28): Qo-Eacc (Type 0)

Cavity(29): Qo-Eacc (Type 1)

Cavity(30): Qo-Eacc (Type 2)

68

<u>Cavity(31): Problem of HOM coupler (Multi-pacting at Low gradient)</u>

HOM1、HOM2、HOM4、HOM5でQextの変化があった。HOM pick-upの発熱によりQoが低下したと思われる。 High fieldではQhomに変化は見られなかった。20MV/m付近で見られるQoに低下はフィールドエミッショによるものである。

Cavity(32): Trend (#3 cavity 2nd test)

Temp [K]

HOM couplerが液面から出るレベル ----

Time [min]

Cavity(33): Passband Measurement

パスバンド($\pi/2$)に対するHOM couplerのQext

ノッチフィルターのバンド幅の関係から、

Qext = 10^9~10^10

これを利用すると、

加速モードの表面電流負荷(耐電圧特性) + 透過電力(耐電力特性)の評価が出来る。 測定結果

Feedthough	パスバンド
	(He中)
Туре 0	11 MV/m, 3 [W]
Normal	
Туре 0	20 MV/m, 8 [W]
Modify	
Type 2	25 MV/m, 13 [W]

	Trans (Qt)	HOM1	HOM2	HOM3	HOM4	HOM5	Other
Pi-mode at	3.8 x 10^11	7.2 x 10^11	1.7 x 10^13	5.8 x 10^13	2.2 x 10^12	3.8 x 10^14	1299.956 MHz
30MV/m	0.623 [W]	0.318 [W]	0.013 [W]	0.004 [W]	0.010 [W]	0.0005 [W]	
Pi/2-mode at	2.5x 10^11	1.2 x 10^10	2.9 x 10^10	1.9 x 10^10	2.1 x 10^10	1.5 x 10^10	1286.963 MHz
20MV/m	0.425 [W]	8.21 [W]	3.57 [W]	5.57 [W]	4.88 [W]	7.08 [W]	

Cavity(34): Summary of VT data

Test Eacc [MV/		1] 維持可能な電界強度	フィードスルー	瞬間最大電界強度 [MV/m]	Rres [nΩ]
	ヘリウム中	ヘリウム外		(制限の理由) 	(field)
#1 cavity 04/Feb/2010	-	-	Without	43.7 (power limit) F.E onset (30)	38.0 (3.63)
#2 cavity 14/Oct/2010	18	13 (HOM pick-up) Slow cooling	Type 0 (normal)	42.6 (Heating HOM pick-up), F.E onset (31)	38.6 (3.56)
#3 cavity 1st June/08/2011	30.3 まで確認。	25 (HOM pick-up) Fast cooling	Type 0 (modify)	30.3 (Quench by defect) F.E onset (26)	31.1 (3.04)
#4 cavity 1st (will install CM) 20/Sep/2011	12	5 (HOM pick-up) Fast cooling	Type 1 (1 st test.)	20.3 (Heating HOM pick-up) (Quench by defect ?)	47.8 (3.16)
#5 cavity 1st (will install CM) 04/Oct/2011	16.5	12 (HOM pick-up) Fast cooling	Type 1 (表面処理改善)	28.8 (Heating HOM pick-up) F.E onset (28)	40.0 (3.13)
#3 cavity 2 nd 01/Nov/2011	33.4 まで確認。	31.9 まで確認。 (外導体が発熱)	Type 2 (ロウ材部の除去など)	33.4 (Quench: Self Pulse、中間状態) コンタミ?欠陥?、F.E. onset (26)	34.5 (1.43)
#4 cavity 2 nd 15/Nov/2011	20.2 まで確認。 		Type 2	Super leak due to F.E. アイリス部に傷あり、BPに内部欠陥あり、 バーストが起こった様子。 F.E onset (13 → 3.5)	30.3 (1.65)
#5 cavity 2 nd 29/Nov/2011	30.6 まで確認	28.2 まで確認。(外導体が発熱) (アンカー減らした。1/2)	Type 2	30.6MV/m (Quench: Self pulse, 中間状態) F.E. onset (21)	35.5 (0.95)
#4 cavity 4th 13/Dec/2011	20.5 HOM pick-up	7.5 HOM pick-up (アンカー減らした。1/4)	Type 1 (ロウ材部の除去など)	26.7 (HOM pick-up heating) No Emission at Max field、リペア品	34.4 (1.57)
Cavity(35): Conclusion

2セル3空洞の最終状態(VT result), 20111226

	Frequency[MHz]@ 2K (Pre-tuning, EP)	Field flatness	Qt	Eacc Max [MV/m]	F.E. onset [MV/m]
#3	1299.533 (1297.481, 30um)	90.3 (0.903:1)	5.77 x 10^10	33.4 (Type 2)	26
#4	1299.517 (1297.420, 20um)	99.4 (1:0.994)	4.96 x 10^10	26.7 (Type 1)	26.7 (No emission)
#5	1299.427 (1297.255, 10um)	96.9 (0.969:1)	4.16 x 10^10	30.6 (Type 2)	21

Target Operating gradient : 15 MV/m at CW

- ※ #4 については、連結化のときに Type 2 に付け替える。
- ※ Type 2(メス) については勘合部の破損が考えられるため、納期が間に合えば、

Type 2(オス)に付け替えてもらう。

※ 空洞性能としては、目標値に到達したので、モジュール化のために空洞グループへ引き渡す。 73

Cavity(36): Purge by Ar gas for next step

空洞外面を洗浄して、クリーンルームへ移動する。

<u>Cavity(37): ヘリウムジャケット溶接後の高圧ガス耐圧試験</u>

高圧ガス耐圧試験(2011年12月21日) ・2セル#3空洞(Heジャケット溶接後) :Heガス 1.25倍耐圧(0.17MPa)、スニファー ・Heパネル(試験用)

:水 4倍耐圧(0.53MPa) 、目視など

Cavity(38): ヘリウムジャケット溶接後の高圧ガス耐圧試験

溶接施工法の承認を得るためのモックアップ。 試験後は廃棄する。

