主加速器用カプラー開発の現状

2010/6/1 阪井寛志、梅森健成、沢村勝、 篠江憲治、古屋貴章

今回の報告

- ・改良窓によるハイパワーテスト
- cold窓のthermal cycle test
- ・カプラー1号機のスケジュールについて

カプラー1号機のデザイン

①改良前の窓の問題点(復習)

O30kW CW IOTを用いたテストスタンドを原研に構築。
 またwarm窓、cold窓のcomponentを作成した。
 OHigh power testで8kWのパワー投入で急激な温度
 上昇がCold窓に見られた。この際にパワーロスもみられていた。

〇その後、中を開けた所、セラミック窓が割れているの が確認された。

Coupler high power test stand全景(原研)

改良 cold 窓の 製作

Dipole modeはセラミック厚みに依存。 厚みを6.2mmから5.4mmに変更し、30MHz 程度peakを上にshiftさせるCold窓を作成。

HFSSの計算では-39.0MHz/mmなので、 calc: 0.8mmの変化Δf=-31.2MHz Meas: 0.8mmの変化Δf=-30.0MHz なので、ほぼ設計値通りにシフトしているの がわかる。

前回とは違い、Power lossは見られず、途中、真空の悪化が見られ。 最後は内導体に流すairの流量を1201/minに上げたら、真空悪化はなくなり、 まずは25kWの定在波で投入可能であった。Arc interlockなどはなし。

8

内導体に流すairの流量を901/minにkeepし、specの 20kWにkeepして、セラミック窓の温度上昇をみた。セラ ミック窓の温度上昇が一番大きく、外部空冷無しで ΔT=40℃程度。これは問題ない程度。

<u>新しいセラミック窓のhigh power testのSummary</u>

- セラミック窓の厚みを6.2mmから5.4mmに変更した新しいセラミック窓を作成した。その結果、共鳴peakを計算通りに30MHz上にescape可能であった。
- セラミック窓に電場peakがくるような定在波のhigh power testを新しい窓を用い て行った。前回と違い全くpower lossがなくsmoothに27kWまでのCW standing waveのパワーが投入可能であった。
- 温度上昇はセラミック窓で△T=40度であり、問題ない。
- 現在カプラー1号機の作成を行っており、夏以降に1号機のハイパワーテストを 東カウンターホールにある30kW IOTで行う予定である。(原研から移設予定。)

②セラミック窓のサーマルサイクル試験

- Motivation
 - STF-BLGから、室温
 280Kを幾度かくり返すとCold窓から真空

 リークが発生すると報告。4台中3台も(2009年夏前)
 - 内導体ろう付け部からの漏れが原因。
 - ERL主加速器用カプラも例外ではないが、HA997や、内外導体の半径の違い、chokeの長さの違いなどもあり、こちらでも違いがあるかどうか作成したCold窓でサーマルサイクル試験を行う。
- 5回の(4回が80K、1回は180K)の冷却試験を行った。
 - 1回目:断熱槽にてブレード線を使用し、80Kまで冷却
 - 2回目: 発泡スチロール容器にCold窓を入れ、180Kまで冷却。
 - 3-5回目:発泡スチロールにて、80Kまで冷却。

Coldセラミック窓詳細図(外部配布禁止)

・パラメータ

 ーセラミック(HA997)厚み 6.2mm
 ー内導体のCu厚み 1mm
 ーMoリング 0.25mm
 ーろうづけ 金ロウ

STF-BLとの違い: セラミック窓 HA997 内導体choke長さの違い: ΔI=10mm 内外の半径。

窓はN社、全体の製作ろうづけはT社にて行った。

冷却の様子(2回目以降のクーラーボックスでの冷却)

2回目 3回目

発泡スチロールの台にCold窓をのせる。

- 試験を簡略化するため、断熱真空槽を用いずに、
 発泡スチロール製ボックスでテストを行う。
- 液体窒素の冷気で冷却、その後アンカー部に少しづつ液体窒素を触れさせ冷やしていく。
- 液体窒素は約30分に一回のペースで入れた。
- この2回目のみ180K(-100℃)、3回目以降80K
 (-200℃)到達後しばらく放置。室温に戻った後、 リークチェック。

4回目以降は板にのせる

Leak check results

測定	冷却前 (Pa*m^3/sec)	冷却後 (Pa*m^3/sec)
1回目	< 1 × 10^-10	< 1 × 10^-10
2回目	< 1 × 10^-10	< 1 × 10^-10
3回目	< 1 × 10^-10	< 1 × 10^-10
4回目	< 1 × 10^-10	< 1 × 10^-10
5回目	< 1 × 10^-10	> 1 × 10^-4

•ULVAC社HELIOTで測定を行った。 5回目の冷却の後、室温にまで戻 し、セラミック部にHeをかける。10⁻ ⁴[Pa.m³/sec] 台のリークあり。かな り大きい。

•Leak発見後、内導体からか外導体からかの区別を見た所、内導体からのleakだと判明した。

Leak → STF-BLのcaseとほぼ同じ。対策が必要。

ANSYS 計算(preliminaly)

ANSYSを用いた熱応力解析の結果。物 性値は下表。 300K→80Kの応力解析

拘束条件:セラミック部y方向(垂直方 向):x方向内導体1点

曲げ強度		圧縮強度	
HA95 : 0.35GPa		HA95 :>2GPa	
HA997: 0.3 GPa		HA997: >2 GPa	

内導体のろうづけ部がストレスが高いのが判明。 現在:他の形状も含めて計算中& おそらくろうづけ時の温度から計算する必要あり。 最適解が見つかり次第、ろうづけ試験を行い、 Thermal cycle testを行う。

平均膨張係数

	1300-80	1300-300	300-80
Cu	19.315 × 10 ⁻⁶	21.097 × 10 ⁻⁶	14.214 × 10 ⁻⁶
アルミナ	7.224 × 10 ⁻⁶	8.252 × 10 ⁻⁶	2.720 × 10 ⁻⁶
Мо	5.820 × 10 ⁻⁶	6.366 × 10 ⁻⁶	4.524 × 10 ⁻⁶

Calc of stress under cooling

<u>Thermal cycleのまとめと今後</u>

まとめ

- セラミック窓のthermal cycle testをおこなった。 5回目の冷却→室温の後、大きなリークが発生していた。リークレートは10⁻⁴[Pa.m³/sec] 台
- リークは内導体から起こっていることがわかった。
- <u>STF-BIとの違いはHA95,HA997の素材の違い、寸法の違いがあったが、1個</u> 目の測定結果はSTF-BLとほぼ同じ結果であった。

今後

- 今後、choke部分を除き、セラミック窓を切って、リーク箇所の特定、カラーチ ェックなどを行いたい。(割れた部分の確認。)
- この熱膨張率の値を入れて計算(ANSYS)も行い、応力分布の比較も行う予定。これによりMoring、銅板の最適化を行い、次のテストセラミック窓(熱テスト用)を作成。
- また、熱膨張の影響をさけるためにMoringのサポートを変えたセラミックサポートでのろうづけテストを行い、thermal cycle testも行っていく予定である。

③今後の方針(最短スケジュール)

here

・カプラー1号機の製作、クリーンルームでの組み立て+E-hallでのパワースタンドの構築 ・その後、high power 試験+液体窒素冷却化での1号機の入熱試験@E-hall ・窓のろうづけ条件だしとセラミック窓のthermal cycle testwの続き。

Back up 資料

- Figure 1: The TTF-III couple
- 空冷の流量は201/min。
- Standingで10K/kWの温度上昇。
- 我々の場合は20kW standingで 90l/minで温度上昇が40度程度。したがって、大体2K/kW。流量が温度 上昇にlinear(ほんまはsquare root だったか?)だとほぼ同じ結果。そん なに温度上昇は遜色ない結果となっている。

Figure 7: CW measurements at the TTF-III type coupler. (a) Example of PT1000's temperature versus time. Measurements were made with HoBiCaT cold and the waveguide shortened. (b) Summary of all tests.²¹