FLS 2010 ICFA Beam Dynamic Workshop SLAC National Accelerator Laboratory Menlo Park, CA

FLS2010報告

<u>中村典雄(ISSP)</u>、羽島良一(JAEA)、西森信行(JAEA)、宮島司(KEK)

名称

48th ICFA Advanced Beam Dynamics Workshop on Future Light Source

• 開催日•場所

March 1 – 5, 2010, SLAC National Accelerator Laboratory

目的

to review and discuss modern accelerator-based light sources for wavelengths ranging from the Infrared to X-rays.

• 参加人数

総計225名(各WG内訳: Scientific needs 24名、Storage ring 31 名、ERL 12名、FEL 51名、Gun 36名、Diagnostics 27 名、Undulator&BL 18名、Novel source 26名) 日本人 8名(KEK 2名, JAEA 2名, ISSP 1名, RIKEN 2名, JASRI 1名)

ワークショップ会場

Plenary talk: Panofsky Auditorium, ERL WG: Redwood Room C

主催者側によるワークショプ関係の写真は、近々ウェブ上に掲載予定。

28 Sunday	1 Monday	2 Tuesday	3 Wednesday	4 Thursday	5 Friday 6
S AM					
9	9:00 AM	9:00 AM	9:00 AM	9:00 AM	9:00 AM
	9:00-Welcome-P.Drell	Science with next-generation hard X-ray	Report from the high brightness	Working groups	Summary report
	(SLAC) 9:15-Welcome- 1 Galavita (SLAC)	sources – S. Wakatsuki (KEK)	electron beams workshop - J. Rosenzwein (LICLA)		Working Group 1
1	9:30 64	9:30 AM	B-30 AM	9:20 AM	9-20 AM
	Future performance of the	Science with next-generation soft X-ray	Concents for smaller, cheaper,	Working organs	Summary report -
	LCLS - J. Welch (SLAC)	sources - F. Parmigiani (ST)	better - C. Pellegrini (UCLA)	Training groups	warking group 2
10	10:00 AM	10:00 AM	10:00 AM	10:00 AM	10:00 AM
	Progress at the XFELs in	X-Ray Detectors for Next-Generation X-Ray	Advances in laser/plasma-based	Working groups	Summary report -
	Braun (PSI)	ImagingDaniel Rolles, CFEL	sources - w. Leemans (LBNL)		wanang group a
	0 10:30 AM	№ 10:30 AM	• 10:30 AM	10:30 AM	♦ 10:30 AM
	Coffee break	Coffee break	Coffee break	Coffee break	Coffee break
11	11:00 AM	11:00 AM	11:00 AM	11:00 AM	11:00 AM
1	Progress in soft X-ray FELs	Ring-based sources overview - M. Borland	Advanced insertion devices;	Working groups	Summary report -
	- R. Bartolini (Diamond)	(ANL)	practices and concepts – R. Schlueter (LBNL)	-	working group 4
	11:30 AM	11:30 AM	11:30 AM	11:30 AM	11:30 AM
1	Lessons from FLASH - S.	R&D towards an ERL – G. Hoffstaetter	Room temperature high rep-rate	Working groups	Summary report -
	Schreiber (DESY)	(Cornell U.)	RF structures for light sources	4	working group 5
12.004	12-00 004	12-00.201	12.00 044	12.00.004	12.00 011
12 PM	Performance Metrics of	Unassigned discussion time	Unassigned discussion time	Working arouns	Summary meiort -
	Future Light Sources - R.			Thomas a capa	working group 6
1	Hettel (SLAC)				
	© 12:30 PM	12:30 PM	0 12:30 PM	€ 12:30 PM	A 12:30 PM
1	Lunch	Lunch	Lunch	Lunch	Lunch
	1:30 PM	1:30 PM	1:30 PM	1:30 PM	1:30 PM
	Working groups	Working groups	Excursion	Working groups	Summary report -
			6	1	working group 7
2					2:00 PM
					working group 8
1	F I	r 👘	1 1	F	
3					
	-			· · · · · · · · · · · · · · · · · · ·	
4	2 4:00 PM	2 4:00 PM		4:00 PM	
	Coffee Break	Coffee Break		Coffee Break	
	4:30 PM	4:30 PM		4:30 PM	
5. 5:00 PM	Working Groups	Working Groups		Working Groups	
Registration and	1				
Reception					

WG3プログラム(1)

Day : 1. Monday (11)					Day: 2. Tuesday (12)				
	3/1/2010 1:30 PM	04:00 PM	Working Group (Project Status Update)			3/2/2010 1:30 PM	06:15 PM	Working Group (High rep rate guns)	*** joint with Gun WG ***
U	3/1/2010 1:30 PM	01:55 PM	Project status updata (Cornell)	G. Hoffstaetter		3/2/2010 1:30 PM	01:55PM	High rep rate guns: JAEA	N. Nishimori
U	3/1/2010 1:55 PM	02:20 PM	Project status update	N. Nakamura		3/2/2010 1:55 PM	02:20 PM	High rep rate guns: JLAB	F. Hannon
Ŵ	3/1/2010 2:20 PM	02:45 PM	(KEK/JAEA) Project update (JLAB)	S. Benson		3/2/2010 2:20 PM	02:45 PM	High rep rate guns: Cornell University	C. Sinclair
Ø	3/1/2010 2:45 PM	03:10 PM	Project status update	S. Smith		3/2/2010 2:45 PM	03:10 PM	High rep rate guns: KEK	T. Miyajima
			(Daresbury)			3/2/2010 3:10 PM	03:35 PM	High rep rate	I. Ben-Zvi
U	3/1/2010 3:10 PM	03:35 PM	Project status update (Berlin)	Bettina Kuske		3/2/2010 3:35 PM	04:00 PM	High rep rate	F. Sannibale
	3/1/2010 4:30 PM	06:00 PM	Working Group (ERL Performance)			3/2/2010 4:30 PM	06:15 PM	Working Group (High rep rate	*** joint with Gun
Ø	3/1/2010 4:30 PM	04:50 PM	Performance	J.D. Brock				guns)	WG
			evaluation of ERLs			3/2/2010 4:30 PM	04:55 PM	High rep guns: APS	A. Nasiri
U	3/1/2010 4:50 PM	05:10 PM	ERL operation modes	G. Hoffstaetter	۵	3/2/2010 4:55 PM	05:20 PM	High rep guns: NPS	J. Lewellen
Ű	3/1/2010 5:10 PM	10 PM 05:30 PM	PM Performance comparison between APS- upgrades and an ERL@APS	M. Borland		3/2/2010 5:20 PM	05:45 PM	High rep rate guns: FZD Rossendorf	J. Teichert
						3/2/2010 5:45 PM	06:15 PM	High rep rate gun discussion	*** ALL ***
	3/1/2010 5:30 PM	06:00 PM	Discussion						

WG3プログラム(2)

🗆 Da	y: 4. Thursday (17)								
	3/4/2010 9:00 AM	09:30 AM	Working Gourp (FELs in ERLs)	*** joint with FEL WG ***		3/4/2010 1:30 PM	04:00 PM	Working Group (Miscellaneous Topics)	
	3/4/2010 9:00 AM	09:30 AM	XFELO in an ERL	R. Hajima	Ø	3/4/2010 1:30 PM	01:50 PM	BBU	G. Hoffstaetter (discussion leader)
	3/4/2010 9:30 AM	09:45 AM	Recirculation Design for FEL	S. Smith					
			Driver	M. Borland	۵	3/4/2010 1:50 PM	02:10 PM	HOM absorber	R. Hajima
	3/4/2010 9:45 AM	10:00 AM	Recirculation Optics for XFEL-						(discussion leader)
			0		U	3/4/2010 2:30 PM	02:50 PM	Design of a 2- loop ERL at Cornell	G. Hoffstaetter
	3/4/2010 10:00 AM	10:30 AM	FELs in ERLs: general	*** ALL ***					
			discussion			3/4/2010 2:50 PM	04:30 PM	other topics	*** ALL
	3/4/2010 11:00 AM	12:30 PM	Working Group					ounce copies	***
			(Injector and SRF)			3/4/2010 4:30 PM	06:00 PM	Working Group (New idea, cost/performance tradeoffs)	
٥	3/4/2010 11:00 AM	11:20 AM	Studies at KEK	T. Miyajima					
۵	3/4/2010 11:20 AM	11:40 PM	Studies at Cornell	F. Loehl	Ø	3/4/2010 4:30 PM	04:50 PM	Coherent Light	A. Meseck
٥	3/4/2010 11:40 AM	12:00 PM	Studies at JLAB	R. Rimmer				Generation	
	3/4/2010 12:00 PM	12:30 PM	Discussion		3 Da	y : 5. Friday (1)			
	1 f a - 2a					3/5/2010 10:00 AM	10:30 AM		

Summary Report - Working Group

3

ERL WG Summary

Summary of ERL WG

Conveners Ryoichi Hajima Georg Hoffstaetter

March 5, 2010.

ERL WG

Working Group Overview

- Project Status Update
 - reports from 5 projects
- Performance & Operation modes
- High-rep. Guns (Joint Session with Gun WG)
- FEL in ERLs (Joint Session with FEL WG)
- Injector & SRF
- Miscellaneous Subjects

Georg H. Hoffstaetter Future Light Source Workshop 2010. 04 March 2010

Status of the ERL Project in Japan

ERL Project

- Compact ERL (final version : 2 loop, 245 MeV, 100 mA)
- Two-loop 5-GeV ERL and 7.5-GeV XFEL-O

R&D on Key Components

- 500-kV DC photocathode gun with a segmented insulator
- Test injector beamline and drive laser system
- SC cavities for both injector and main linacs

Compact ERL (cERL)

- Optics design and error effects of cERL studied
- East Counter Hall renewed as cERL building
- Commissioning (1 loop, 35MeV, 10mA) planned in FY2012

Status of the ERL Projects at BNL

R&D ERL at BNL: 500 mA, 20 MeV, SRF injector, advanced state of construction

The ERL vault, showing the SRF cavity and some of the magnets. 2. The 704 MHz 5-cell 20 MeV cavity with single-mode properties. 3. The superconducting 2 MeV 500 mA guns.
 The load-lock multialkaline photocathode system. 5. 6 watt green beam laser.

FLS 2010
ICFA Beam Dynamic Workshop

JLab Conversion to JLAMP

ALICE Project Status Update

HELMHOLTZ ZENTRUM BERLIN für Materialien und Energie

BERLinPro: ERL demonstration facility @ Berlin-Adlershof

- **Goal:** 1.3GeV, 100MeV, 100mA, small emittance, short bunches Explore limits of ERL, show different operational modes
- Gun: Funded, staged approach

Beam dynamics \rightarrow Cathode infrastructure \rightarrow High current

Merger: Studies show: C-chicane does the job

- -Higher order dispersion is an issue
- -Lower limit on bunch length after merger depends on current and energy spread
- -Emittance depends on bunch length: Remaining compression factors in recirculator < 10
- -Lambertson Magnet considered as last merger dipole: saves chicane for high energy beam

Path length control:

Most probably in arc, trajectory elongation in central dipole by outside deflection of the beam

Cryogenic plant

Too little space for shielding above ground Consider construction underground Benefit: reduced vibrations and temperature fluctuations at comparable costs

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA

Comparison of APS-upgrade to ERL@APS

APS-upgrade may include

- 2ps X-ray by crab cavity
- short-period SC undulators
- long straights (7.7m)
- higher current (150 mA)
- lower coupling (8 pm)

- shorter pulse, higher flux and brightness
- relative low risk
- ERL@APS makes spectacular promises, but
 - □ multiple show-stoppers \rightarrow significant R&D required
 - not much enthusiasm from APS users
- APS-U does nothing to preclude ERL@APS
- ANL also keeping XFELO and USR in mind

Comparison of APS Upgrade to ERL@APS, FLS2010, M. Borland

- Hard X-ray ERL can accommodate XFELO.
- 0.1nm-XFELO is feasibly realized at
 - 5-GeV ERL with velocity bunching
 - □ 7.5-GeV beam from a 2-loop 5-GeV ERL
- In the Japanese collaboration, XFELO is considered as a part of 5-GeV hard X-ray ERL.

Studies of compact ERL injector in Japan

- Beam dynamics simulation for the compact ERL (cERL) has been carried out using 3D space charge particle tracking code.
 - For high current mode with 80 pC/bunch, we obtained the minimum emittance of 0.56 mm mrad with the bunch length of 0.63 mm. with the gun voltage of 500 kV.
 - For XFEL-O with 20 pC/bunch, so far, we have obtained the minimum emittance of 0.13 mm mrad with the bunch length of 0.6 mm and the gun voltage of 600 kV.
- To evaluate performance of the DC guns, we are developing the gun test beamline in the PF-AR south experimental hall, KEK.
- From the early part of March, we are going to start beam running in the gun test beamline using NPES3 200kV DC photo cathode gun.

Beam line to develop diagnostics system with emittance and bunch length measurement systems

11

Update on CW SRF at JLAB

- CEBAF 12 GeV upgrade ramping up (10 CM's in 2 years)
- Cavity performance encouraging with EP or large grain
- better Q0 pulls down ERL cost

Jefferson Lab

- JLAMP/FEL, SRF guns, high-current cavity.
- Large 2K cryogenic plant are getting more efficient

- Beam-Breakup instability is well understood and simulations corrspond to measurements at the JLAB ERL. BBU studies therefore do not require another test ERL.
- Cavity shapes can and have to be optimized so that the BBU threshold becomes insensitive to cavity construction errors.

HOM Absorber

- Material of absorber
 - □ ferrite (New IB004-1) for KEK/JAEA main linac
 - Carbon nanotube for Cornell main linac
- Frequency range to be covered
 - We need to manage high-frequency component (>100GHz)
 - additional installation of XFEL-type HOM absorber may help
- Manufacturing
 - Study needed
 - Effects of thermal cycle and design to avoid cracking
 - hot isostatic press seems promising
- Magnetization
 - No problem, so far.
- Conductivity to avoid charge up
 - Carbon nanotube seems to be conductive in low temp.

2-Loop ERL Concerns: OK, Challenge

- 1. Space charge forces for superimposed beams and emittance growth.
- 2. Intra beam scattering between superimposed beams and halo/background creation.
- 3. Increasing Higher Order Mode (HOM) power for separated bunches.
- 4. More sophisticated Beam spectrum and RF control.
- 5. Tighter orbit and return time tolerances.
- 6. Limits of orbit corrections for 4 simultaneous beams.
- 7. Linac optics for 4 simultaneous beams.
- 8. Reduced Beam-Breakup (BBU) tolerances, esp. with cavity errors.
- 9. Reduced effectiveness of polarized cavities and coupled optics for fighting the BBU instability.
- 10. Impedance budget and increased energy spread.

Depending on environment, the challenges can be worth the potential savings or not.

Cornell: increased tunnel and building needs for two turns make risk not worth taking.

KEK: because of space limitations, a two turn ERL seems to have a benefit.

Operation Modes for Hard X-ray ERL (Cornell)

	Energy recovered modes			One pass	
Modes:	(A)	(B)	(C)	(D)	Units
	Flux	Coherence	Short-Pulse	High charge	
Energy	5	5	5	5	GeV
Current	100	25	100	0.1	mA
Bunch charge	77	19	77	1000	рС
Repetition rate	1300	1300	1300	0.1	MHz
Norm. emittance	0.3	0.08	1	5.0	mm mrad
Geom. emittance	31	8.2	103	1022	pm
Rms bunch length	2000	2000	100	50	fs
Relative energy spread	0.2	0.2	1	3	10 ⁻³
Beam power	500	125	500	0.5	MW

Average Spectral Brightness for Hard X-ray ERL

Summary of Advantages for ERLs

ERLs have unique capabilities and many advantages over rings:

- a) Large currents for Linac quality beams
- b) Continuous beams with flexible bunch structure
- c) Small emittances for round beams

[similar transverse properties have recently been proposed for 3km long rings]

- d) Openness to future improvements
- [today's rings can also be improved, improvements bejond ring performances mentioned under c) may be harder to imagine]
- e) Small energy spread
- a) Variable Optics
- b) Short bunches, synchronized and simultaneous with small emittances

The breadth of science and technology enabled is consequently very large and the ERL will be a resource for a very broad scientific community. X-ray ERLs are at the beginning of a development sequence, whereas

decades have brought x-ray rings to the end of their development.

Operation Modes for Other Types of ERLs

Modes:	THz	Compton gamma	Compton x-ray	Seeding FEL
Energy	100MeV <e<1g eV</e<1g 	>300MeV	>25MeV for IR laser for 10keV	>2GeV HHG for Sxr >5GeV for selfseeding Hxr ?
Current	>1mA	>1mA	Large?	kA peak
Bunch charge		Cavity length as long as possible	As large as pos	As high as pos
Repetition rate	for 75MHz	Therefore as low as possible	As low as pos for given current	<1MHz if echo enhanced
Norm. emittance	γλ/4π	λ_{Laser} /4 π	γλ/4π for beam matching	
Geom. emittance	λ/4π	λ_{Laser} /4 π / γ		
Rms bunch length	<100fs	< hourglass > Energy spread if applicable	< hourglass	Somewhat > 30fs +- 20fs jitter laser length
Relative energy spread	To recover	1.e-9, thus as small as possible or corresponding to emittance		Slice over 30fs seed as small as possible.

We appreciate all the contributions to the ERL WG, and the arrangement by WS Organizers.

ICFA have approved ERL-11 WS. See you at Tsukuba Japan in fall 2011.

Joint Sessions (抜粋)

JAEA/KEK DC gun for ERLs

- N. Nishimori, R. Nagai, R. Hajima Japan Atomic Energy Agency (JAEA)
- M. Yamamoto, T. Miyajima, T. Muto, Y. Honda кек
 - H. lijima, M. Kuriki Hiroshima University

h

M. Kuwahara, S. Okumi, T. Nakanishi Nagoya Univiersity Development of a 500 kV photocathode DC gun at JAEA

High Brightness, HVDC, Photoemission Electron Gun Development at Cornell

Charlie Sinclair Cornell University

1

Segmented Ceramic

750 kV, 100 mA HVPS

- Insulating core
 transformer technology
- 62 circuit boards, each delivering 100 mA at 12.5 kV, stacked in series – 24 pf total capacitance
- Pressurized SF₆ insulation
- External high power, high frequency (~ 100 kHz) drive and control circuitry

Photocathode Performance

GaAs wafer, anodized at large radius, indium soldered to Mo Puck

- Cathodes to date have been GaAs, cleaned by atomic hydrogen and heating, and activated with Cs and NF_3
- Initial QEs of 12-15% at 520 nm, with lifetime limited only by ion back bombardment
- Cathode changes, every several weeks, take about $\frac{1}{2}$ hour, with no dropped pucks
- Maximum current to date 20 mA DC in test lab, 8 mA with 1.3 GHz RF structure 13

High Power 1.3 GHz Laser

- Operated for ~ 5 hours at 20 W green, and for very extended times at 15 W green
- Measured 53% transmission from laser output to gun entrance window

ACTUAL 1.3 GHz Green Laser

Measured GaAs Thermal Emittance vs. Wavelength

GaAs Temporal Response vs. Wavelength

Wavelength (nm)	Gun Voltage (kV)	Temporal Response (ps)		
860	200	76 +/- 26		
	250	69 +/- 22		
785	200	11.5 +/- 1.2		
	250	9.3 +/- 1.1		
710	200	5.8 +/- 0.5		
	250	5.2 +/- 0.5		
520	250	< 1		
460	250	<0.14		

10.3.11

Summary FLS2010 FEL Working Group Part II

Joe Bisognano/Kwang-Je Kim

1

Conclusions

- Hard X-ray ERL can accommodate XFELO.
 - we can extend the frontier of X-ray beam parameters
- 0.1nm-XFELO is feasibly realized at
 - 5-GeV ERL with velocity bunching
 - 7.5-GeV beam from a 2-loop 5-GeV ERL
 - an ERL injector is shared, no major modification is needed
- XFELO can be installed either at a loop or a branch.
 - however, beam loss in a long narrow duct might be a problem for a XFELO in a loop
- In the Japanese collaboration, XEELO is considered as a part of 5-GeV hard X-ray ERL.

FLS 2 CFA Beam	010 n Dynamic Workshop	R. Hajima	19

Many FELs in an ERL

Douglas

Recirculation in NLS Summary

Also a presentation from M Borland

Susan Smith STFC Daresbury Lab

Personal Highlights/Biases

• FELs in ERLs

- Workable but not necessary for FELs, since average current low
- RF separation or seeding at subharmonic frequency to allow several FELs
- Layout of user experiments needs to be better considered
- Low power beam dumps an attraction
- Simultaneous incoherent ERLing with FEL operation an open question
- Recirculation to save costs
 - Two pass recirculation seems to survive CSR and beam quality preserved well enough
 - Bunch compression harder, doesn't look as good as single pass and may be problematic (but looks good enough to lase)
 - Cost savings of ~30 % for linac; 10 % for facility; is this worth it? (on the other hand 10 % of \$1 billion is nontrivial)

... for a brighter future

XFELO X-ray Cavity Feasibility Studies

Yuri Shvyd'ko

U.S. Department of Energy UChicago ►

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

XFELO Technical Challenges

X-ray Optics:

- Quality of diamond crystals: is the theoretical reflectivity achievable?
- Heat load problem: reflection region variations $\lesssim 1$ meV. 🗸
- Angular stability: $\delta heta \lesssim 10$ nrad (rms) • Spatial stability: $\delta L \lesssim 3~\mu$ m (rms) $ightarrow ~ \delta L/L \lesssim 3 imes 10^{-8}$
- Radiation damage

ERL vs Ultimate Ring (抜粋)

Overview of Ring-Based X-ray Sources

Michael Borland

Argonne National Laboratory

March 2010

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Brightness of a Few Present and Planned Rings

- APS curve assumes existing 2.4m long U27
- Assume maximum length SCU20 (future 1.25T device¹)
- Used best published electron beam parameters, with 1% coupling
- First three harmonics shown only

¹R. Dejus, private communication.

Overview of Ring-Based X-ray Sources, M. Borland, FLS2010

Brightness Comparison

Overview of Ring-Based X-ray Sources, M. Borland, FLS2010

Computed with sddsbrightness (H. Shang, R. Dejus, M. Borland)

Transverse Coherence Comparison

Overview of Ring-Based X-ray Sources, M. Borland, FLS2010

Flux Comparison

Overview of Ring-Based X-ray Sources, M. Borland, FLS2010

Computed with sddsfluxcurve (M. Borland, R. Dejus, H. Shang)

Isn't an ERL Better?

Performance Measure	Advantage	Comment
High transverse coherence	ERL	ERL has emittance and matching advantage
High average flux	USR7	ERL needs very long undulators and high current, not very plausible
High average brightness	Similar	Assuming 48m undulators in ERL, extremely small emittances
Wide tunability	ERL?	Can gaps really be smaller in ERL (impedance)?
Short bunch length	ERL++	Who cares at 1.3 GHz?
Useful repetition rate	Similar	USR7 slightly more flexible
High stability	USR7	ERL has additional sources of jitter
Less R&D	USR7++	
Less risk	USR7++	
Lower construction cost	USR7	For same number of beamlines
Lower operating cost	USR7+	Large cryoplant for ERL
Higher reliability	USR7++	Large cryoplant, many rf systems for ERL

USR+FELs is a better strategy than ERL+FELs

Overview of Ring-Based X-ray Sources, M. Borland, FLS2010

R&D toward an ERL

X-ray ERLs have unique capabilities and many advantages over rings:

- a) Large currents for Linac quality beams
- b) Continuous beams with flexible bunch structure
- c) Small emittances for round beams
- d) Openness to future improvements
- e) Small energy spread
- f) Variable Optics
- g) Short bunches, synchronized and simultaneous with small emittances

The breadth of science and technology enabled is consequently very large and the ERL will be a resource for a very broad scientific community.

X-ray ERLs are at the beginning of a development sequence, whereas decades have brought x-ray rings to the end of their development.

Energy Recovery Projects: (A) low energy

•ALICE as THz source, IR-FEL, and Compton scattering source

 JLAMP: unparalleled average brightness for 10-100eV photons.
600MeV by 2 pass ERL, pulses of 50fs, 200pC/1µm for HHG-FEL Other Energy Recovery concepts

- Extension in energy of BINP FEL/ERL
- BerlinPro test ERL
- BNL test ERL&coherent electron colling
- Medium Energy Electrion Ion Collider
- ERL for eRHIC Electrion Ion Collider
- ERL for LHeC

Georg H. Hoffstaetter

The Compact ERL for Demonstrating ERL Technologies at KEK

Before constructing large-scale ERL facility, we need to demonstrate the generation of ultra-low emittance beams using developed key devices.

Parameters of the Compact ERL				
	Parameters			
Beam energy	35 - 245 MeV			
Average current	10 - 100 mA			
Normalized emittance	0.1 - 1 mm mrad			
Bunch length (rms)	1 - 3 ps (usual) ~ 100 fs (with B.C.)			
RF frequency	1.3 GHz			

Status:

- Clearing 10,000 tons of concrete shields in the East Counter Hall has almost been finished.
- Refurbishments of the building, coolingwater plant, and electric substation have almost been finished.
- Installation of liquid-Helium refrigerator (cooling capacity: 600 W) has almost been finished.
- Installations of rf source (single station) and clean room for SCC development have almost been finished.

Georg H. Hoffstaetter

JAEA / HV testing of a 500-kV DC gun

34

Field distribution of the 500-kV gun 500 kV for 8 hours without any discharge

Georg H. Hoffstaetter Future Light Sources Workshop 2010

2 March 2010

Technical challenges of CW linacs: International CW cryomodule collaboration

- Stanford has provided a 2-cavity cryomodule (incl. some internals).
- Cornell provides two modified and vertically tested 7-cell cavities (original superstructure cavities were supplied by DESY); design of HOM absorbers and input couplers; overall expertise.
- DL provides the HOM absorbers and couplers; modification of the CM; other new components (thermal and magnetic shields, tuners, end caps, ...); facilities for CM assembly and tests.
- □ FZD have provided the 3D cryomodule drawings.

31

- LBNL have provided electromagnetic cavity design expertise.
- Engineering and design effort split across institutes (mostly DL and Cornell).

Cornell Injector prototype: Verification of beam production

35

Understanding of emittances

Georg H. Hoffstaetter Future Light Sources Workshop 2010 2 March 2010

Future Performance of the LCLS

J. Welch for many* SLAC National Accelerator Laboratory

FLS 2010, ICFA Beam Dynamics Workshop on Future Light Sources, March 1-5, 2010. SLAC National Accelerator Laboratory, Menlo Park, California

Injector concept

- A second injector provides for two simultaneous FEL beams with independently adjustable parameters
- Two independent e- beams allows x-ray pump, x-ray probe with decoupled wavelength, pulse width, energy and timing constraints

FEL Concept

 Baseline: One hard xray beam and one twocolor, two-pulse, variable delay beam; e- beam lases twice.

Lessons from FLASH

FLASH

Upgrade

FLASH II

Lessons

Siegfried Schreiber DESY

FLS 2010 SLAC 1-6 March 2010

Summary Upgrade 2009 / 2010

- > Upgrade shutdown started September-21, 2009
- > Technical commissioning started February-15, 2010
- > First beam expected in April, user runs to be started in late summer 2010

in Hamburg

FLASH II layout

- Main features: Seeding and polarized radiation >
- Extend user capacity with SASE and HHG/HGHG seeding
- Tunability of FLASH II by moveable undulator gap
- Using existing infrastructure
- Separation FLASH and FLASH II behind last accelerator module

in Hamburg

Progress at the XFELs in Europe and Japan

Hans-H. Braun, PSI

48th ICFA Advanced Beam Dynamics Workshop on Future Light Sources March 1-5, 2010 SLAC National Accelerator Laboratory

XFELs overview

Project	Status	First Lasing	T _{e-}	λ _{min}	Driver technology (main linac)	Overall length
FLASH	running	2005 (2000 TTF)	1.2 GeV	50 Å	Pulsed SC 1.3 GHz	315 m
FERMI@ELETTRA	construction	2010	1.8 GeV	30 Å	Pulsed NC 3.0 GHz	375 m
SCSS	construction	2011	8 GeV	1 Å	Pulsed NC 5.7 GHz	750 m
European XFEL	construction	2015	17.5 GeV	1 Å	Pulsed SC 1.3 GHz	3400 m
SPARX	Waiting for approval	2015 ?	2.4 GeV	5 Å	Pulsed NC 2.85 GHz	500 m
SwissFEL	Waiting for approval	2016 ?	5.8 GeV	1 Å	Pulsed NC 5.7 GHz	715 m
NLS	Waiting for approval	?	2.25 GeV	12 Å	C.W. SC 1.3 GHz	660 m
Novel Sources (抜粋)

Prospects for Laser Plasma Accelerator Driven Light Sources

Wim Leemans and members and collaborators of the LOASIS Program

Office of Science

Typical experimental set-up for gas jet experiments: ~ 100 MeV beams

Channel Guided Laser Plasma Accelerators – 2006 result

Undulator based diagnostic under development

Areas of improvement in LPA performance for various applications

	THz	X-rays (betatron)	FEL (XUV)	Gamma- rays	FEL (X-rays)	Collider
Energy	1	1	1	1	1	ተተ
ΔΕ/Ε	1	1	V	¥	$\mathbf{A}\mathbf{A}$	$\mathbf{A}\mathbf{A}$
3	1	1	1	1	1	\mathbf{A}
Charge	1	1	1	1	1	1
Bunch duration	1	1	1	1	1	1
Avg. power	1	^	1	↑	^	<u>ተተ</u>

Performance Metrics (抜粋)

Performance Metrics of Future Light Sources

Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010

Science and Technology of Future Light Sources

A White Paper

Report prepared by scientists from ANL, BNL, LBNL and SLAC. The coordinating team consisted of Uwe Bergmann, John Corlett, Steve Dierker, Roger Falcone, John Galayda, Murray Gibson, Jerry Hastings, Bob Hettel, John Hill, Zahid Hussain, Chi-Chang Kao, Janos Kirz, Gabrielle Long, Bill McCurdy, Tor Raubenheimer, Fernando Sannibale, John Seeman, Z.-X. Shen, Gopal Shenoy, Bob Schoenlein, Qun Shen, Brian Stephenson, Joachim Stöhr, and Alexander Zholents. Other contributors are listed at the end of the document.

http://www-ssrl.slac.stanford.edu/aboutssrl/documents/future-x-rays-09.pdf

Argonne National Laboratory

Brookhaven National Laboratory

Lawrence Berkeley National Laboratory

SLAC National Accelerator Laboratory

special acknowledgment to John Corlett, LBNL, and Terry Anderson, SLAC

December 2008

Spectral Brightness

Photons per "Coherence Volume"

Diffraction-Limited Emittance

NATIONAL ACCELERATOR LABORATORY

Energy Bandwidth vs. Pulse Length

