主加速部超伝導空洞開発の現状

2010/1/20 ERL検討会 ERL-SCグループ 梅森健成、阪井寛志、 沢村勝、篠江憲治、古屋貴章

今回の報告

- 縦測定結果(4~6回)
- ・モジュール組み込み用空洞の製作
- ・入力カップラーの開発
- HOMダンパーの開発
- ・クライオモジュールの開発
- ・東カウンターホールの整備状況

縦測定の結果

処理および縦測定の履歴

縦測定	表面処理	コメント		
固定式温度·X線測定装置にて空洞診断(1~3回目縦測定)				
1回目(08. Sep)	EP1(130um), EP2(20um), HPR, baking	STF縦測定システムの立ち上げが主目的 15MV/m, Field emissionで制限		
2回目(08. Oct)	Add baking	本格的な最初の測定 15MV/m, Field emissionで制限		
3回目(08. Nov)	Add HPR, baking	15MV/m, Field emissionで制限		
回転式温度・X線マッピング装置にて空洞診断(4回目以降)				
4回目(09. Mar)	Add EP2(50um), HPR, baking	EPを行い測定		
5回目(09. Apr)	(not applied)	回転マッピング装置での空洞診断が主 目的		
6回目(09. Dec)	Local grinding, Add EP2(50um)	突起部をLocal grinding。STFにて初め てのEPをして測定		

回転mappinng装置

センサー取り付け様子

全体

X-ray mappingのデータ例(1)

π-mode(1回目) Eacc=8.5MV/m, Qo=9e9(左図) π-mode(2回目) Eacc=13.9MV/m, Qo=5.5e9(右図) アイリス部分のX線

X-ray mappingのデータ例(2)

6π/9-mode Eacc=8.0MV/m, Qo=3.0e9 プロセス前(左図) 6π/9-mode Eacc=8.0MV/m, Qo=1.7e10プロセス後(右図) のアイリス部分のX線

	Eacc	X-ray	コメント
Pi	16.3	8-9iris付近	Field emissionによりクエンチ
8pi/9	12.6	8-9iris付近	Field emissionによりクエンチ
7pi/9	14.3	8-9iris付近	Field emissionによりクエンチ
6pi/9	20.2	8-9iris付近	Field emissionによりクエンチ
5pi/9	21.2		プロセス中だが、最終は中間状態
4pi/9	13.4		2-cell発熱によるクエンチ
3pi/9	8.3		2-cell発熱によるクエンチ
2pi/9	8.8		2-cell発熱によるクエンチ
1pi/9	3.9		4-cell発熱によるクエンチ

パスバンド 測定

空洞内面研磨

STFにてのEPの様子

Degree [Deg]

Degree [Deg]

リーク箇所

- ・空洞引き上げ後、リークチェックを実施
- LBP側(下側)コネクタ
 で、フード法にて1x10⁻⁸
 Pa m³/sのリークが見つ
 かった

cERLモジュール組み込み用空洞 の製作

cERLモジュール組み込み用空洞

- 高圧ガス仕様の設計
- Heジャケット用ベースプレートを設置
- アイリス部分に強め輪を設置
- ダンベルから作成
- LBP直径をΦ120→123に変更(TE111減衰のため)
- ・ フランジをNbTiフランジに
- 両エンドセルを肉厚に(3.5mm厚)
- セル形状はこれまでの設計通り
- 2010年3月に納品予定

入力カプラーの開発

80K dynamic loss region (内導体)

Warm窓high power test

Warm窓だけ割れずに残る。これを用いhigh power test 定在波を立て、電場、磁場peakをセラミック窓にたてる。 窓と端板の間は真空に引く。

<u>磁場peak 結果:</u>

①20kWまでpower投入完了。9-12,15-17kWでarcが働く。

②内導体の空冷なしではベローズの温度上昇が激しい。 92l/minの内導体の強制空冷で温度上昇を6.2K/kW に抑えた。ベローズはパワーテスト後も剥れなど無し。 電場peak結果:

 4kWでセラミック窓が割れる。前回同様割れる前に もう一つのwarm窓でも強制空冷をさらにかけるが 7kWで割れた。原因はpower lossに伴うセラミック窓 の急激な温度上昇。Peaの相関が明らかになった。

> 改良セラミック窓でのpower testが必要。 H Field[A/n] 1.9382e+00 Magnetic field distribution 1.8171e+003 1.6960e+003 calculated by HFSS 1.5748e+003 1.4537e+003 1.3326e+003 1.2114++001 1.0903c+003 9.6917e+002 8.4884e+082 2691++00 6.0578e+002 Warm window bellows 3.6352e+002 2.4239e+082 1.2126e+002 1.3158e-001 RF power End plate 定在波の様子(calc)

改良 cold 窓の 製作

Dipole modeはセラミック厚みに依存。 厚みを6.2mmから5.4mmに変更し、 30MHz程度peakを上にshiftさせるCold窓 を作成。

HFSSの計算では-39.0MHz/mmなので、 calc: 0.8mmの変化Δf=-31.2MHz Meas: 0.8mmの変化Δf=-30.0MHz なので、ほぼ設計値通りにシフトしているの がわかる。3月末にパワーテストを行う予定。

HOMダンパーの開発

フェライトの低温特性測定

• GM冷凍機を用いてε、μの周波数特性の温度依存(280K~40K)を測定

HOMダンパー試作機(フェライトなし)

- 機械特性
 - 軸方向の伸縮
 - ・設計値に対して-10mm~+15mm
 - 径方向のオフセット
 - 5mm~10mm
 - 全長を伸ばした方がオフセット大きい

※ フェライト有りの試作機は現在、製作中

冷却試験

・カップラー用真空断熱槽を利用

外からの入熱が多く、冷え切らない

⇒断熱を強化の予定

ヒータ試験

・リボンヒーターを内面に押し付ける

クライオモジュールの開発

クライオモジュール

ERL主ライナックモジュール

- 15 20 MV x 2台
- 40W x 2空洞 at 2K(ILCは 1W/cavity)
- 減圧排気空間を残す
- 2重窓型入力カプラー(20kW peak全反射)
- 3個のHOM減衰器 (100dia x 1, 123dia x 2)

高圧ガス対策

- 空洞は1台づつ特定設備となる
- クライオスタットは一般則
- 1月26日にヒアリング

35

298.98

東カウンターホールの整備

東カウンターホール

冷凍機に直結した縦測定設備
 内径550mm、深さ3680mmの縦型クライオ 1基
 本年度はクライオスタットと架台まで完成
 来年度は放射線シールドなどを整備

中2階の下にERL用クリーンルーム

- 規模: 10m x 9mのクラス10
- 用途: 空洞組立、真空部品組立など
- 完成: 2010年3月20日予定

組立治具などの内部設備が必要

まとめ(1)

- 空洞関係
 - - 合計6回の縦測定を行ったが、Field emissionにより
 15MV/m程度に制限されている。
 - 回転マッピング装置を開発し、空洞診断は進展した。
 - X-ray trajectory と内面検査カメラ(京都カメラ)により、4,5回 目の縦測定については、emission源の突起を特定できた。
 - STFにおいてのEP処理が可能となった。
- cERLモジュール用空洞
 - 今年度試作機を1台製作。
 - Heジャケット、強め輪、フランジ、LBP等々の変更
 - 高圧ガス申請やモジュール組み立てに則した設計
 - 現在、ダンベルまでできている。今後、多セル化。

まとめ(2)

- 入力カップラー
 - コンポーネントのhigh power 試験を実施。ベローズは空 冷によりOK。窓はdipole modeの励振による発熱が問題。
 - セラミック厚さを変えた改良型窓を製作。3月末にhigh power試験の予定
 - 並行して、断熱真空槽での冷却試験を実施中
- ・ HOMダンパー
 - フェライト無しの試作機を製作。櫛歯型RFブリッジの機械 特性を調べるとともに、冷却試験を行っている。
 - 断熱の強化など、改良しながら試験を継続している。
 - ヒーター試験での温度上昇と計算値とはだいたい合いそう。
 - フェライト有りの試作機は、現在製作中。

まとめ(3)

- クライオモジュール
 - 9セル空洞2台入りのクライオモジュールを設計中
 - 空洞は1台づつ特定設備として高圧ガス申請
 - クライオスタットは一般則で申請
 - 1/26に高圧ガス申請の概要説明
- 東カウンターホール
 - クリーンルームを建設中。3/20完成予定。
 - 縦測定設備は、今年度、クライオスタット1台と、架台(測定室、スタンド)が完成予定。