# System Identification in the cERL LLRF system

Feng QIU July 9, 2014 @ cERL (KEK)

#### **Main Content**



- System Identification
- Models Analysis
- I. Black Model and White Model (Grey Model)
- II. Model comparison (Model output vs. Meas.)
- Model-based Application
- I. Improved FF / FB
- Summary and future plan



- > Why we need the model of the system?
- I. Understand the system well (Loaded Q, Phase calibration, Loop Gain, mathematic model, etl.)
- II. For some more complex application (Adaptive feed forward, MIMO controller, etl.)
- How to "know" the model of the system? (System Identification)



It is either difficult and time-consuming to analyze every component of the RF system



- > Why we need the model of the system?
- I. Understand the system well (Loaded Q, Phase calibration, Loop Gain, mathematic model, etl.)
- II. For some more complex application (Adaptive feed forward, MIMO controller, etl.)
- How to "know" the model of the system? (System Identification)





> Input white noise in the DAC output and read the response from the ADC?





#### > Input white noise in the DAC output and read the response from the ADC?

CERL: LLRF: FB4:: FB4W hiteNoisePKPK1000FF13000FFP hase 0 Seed 25TN4ON Eacc 8 MVm I chanel: Waveform (04-Jun-2014 14:55:55) MVm I chanel: Waveform (04-Jun-2014 14:55; MVm I chanel: Waveform (04-Jun-2014 1





#### Input white noise in the DAC output and read the response from the ADC?

CERL:LLRF:FB4: :FB4WhiteNoisePKPK1000FF13000FFPhase0Seed25TN4ONEacc8MVmIchanel: Waveform(04-Jun-2014 14:55:55)



7

#### **Model choice**





| Туре  | Advantages |                           | Disadvantages |                                                                        |  |
|-------|------------|---------------------------|---------------|------------------------------------------------------------------------|--|
| White | I.         | Know the system in detail | і.<br>П.      | Complexity Model<br>Need prior knowledge<br>about the system in detail |  |

| Black | і.<br>П. | Easy to identify<br>Do not need priory<br>information | 1. | Non-physical                       |
|-------|----------|-------------------------------------------------------|----|------------------------------------|
| Grey  | I.       | The structure of the system can be identified         | I. | Still require some prior knowledge |

#### **Data-based**

### **Model Comparison**



> The comparison of different models



WH: Loaded  $Q(Q_L)$ , Loop Gain (G), Loop Delay, Loop Phase, Klystron nonlinear, etl

$$GR: \begin{pmatrix} y_{I}(n) \\ y_{Q}(n) \end{pmatrix} = \begin{pmatrix} 1 - T\omega_{0.5} & -T\Delta\omega \\ T\Delta\omega & 1 - T\omega_{0.5} \end{pmatrix} \begin{pmatrix} y_{I}(n-1) \\ y_{Q}(n-1) \end{pmatrix} + G \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} u_{I}(n-1) \\ u_{Q}(n-1) \end{pmatrix}$$
$$BK: H_{11}(z) = \frac{Y_{11}(z)}{X_{11}(z)} = \frac{b_{0} + b_{1}z^{-1} + b_{2}z^{-2}}{1 + a_{1}z^{-1} + a_{2}z^{-2}}$$

#### **Performance comparison**

➢ How to evaluate the identified models?



#### **Performance comparison**

Which model can represent the system behavior best?



The black model has the best performance

### **Model-based Applications**



- > What we can do if we "know" the system well?
- Can we evaluate the disturbing signal



### **Model-based Applications**

 $\blacktriangleright$  Remove the evaluated disturbing signal  $\hat{d}$  from FF table (Ripples, Beam Loading)



# **Evaluate the** $\hat{d}$



> Examples: recover the white noise during the system identification experiment



### Simulation



#### Model-Based feedforward vs current feedforward



### Simulation



Model-Based feedforward vs current feedforward (Matlab / Simulink)



#### Summary & Plan



#### Summary

- System Identification experiment for FB4 and FB5
- Comparison of different identified models
- Idea and simulation of some model-based FF

#### Plan

- > Apply the proposed model-based FF in the cERL
- > Other Model-based app.



### Thank you for your attention



#### **Back up**

### Model Based FB optimization

- What is the main problem?
- Τ It is difficult to obtain the inverse transfer function matrix  $G_{P}^{-1}(s)$ , too high orders.
- The  $G_{P}^{-1}(s)$  can not be realized in some case. II.



*MicroPhonics* + *Lorentz detuning* 

Tips

- Connected another system \* Q(s) with  $G_p^{-1}(s)$  to make sure it can be physically realized.
- If the Q(s) is an low-pass \* filter, then the *d* can be still evaluated.

$$\hat{d} = (\varepsilon + d)G_p(s) \cdot G_p^{-1}(s) \cdot Q(s) - \varepsilon \cdot Q(s) = d \cdot Q(s)$$

#### **Simulink Model**



- Simulink Model (see AdvancedPIDV1)
- I. We input the microphonics data from ML2 as a disturbing.
- II. We detect CAV, Pf, and FIL channel in the Simulink model.



#### PI + Proposed FB controller

#### **System Transformation**



