COHERENT RADIATION SPECTRUM MEASUREMENTS AT LUCX FACILITY

LUCX - THz Program:

8

OVERVIEW AND PROSPECTS

A. Aryshev, M. Shevelev, K. Lekomtsev On behalf of QB group and LUCX THz collaboration

ERL beam dynamics group meeting

28 January 2014

Outline

- General motivation(s)
- THz project overview
 - LUCX activity, LUCX Projects Overview, THz program
- LUCX Laser system (briefly)
- LUCX 2012 upgrade
 - LUCX operation modes, e-beam optics
 - Vacuum system, 5D manipulator
- Measurement setup and DAQ THz spectrometer for LUCX
 - Michelson Interferometer
 - Detector
 - Motion system
 - Beam Splitter
 - Experiment at LUCX facility
 - Signal Study
 - Investigation of detector linearity
 - Autocorrelation measurement and spectrum reconstruction
- Schedule & Conclusion & future plans

General motivation

- Construction of a stable and tunable laser system for RF gun development and THz radiation sources tests based on modern technology.
- Build a broad collaborative network among leading institutions worldwide.

Institute for Accelerator Science

 Develop state-of-the-art tunable coherent THz radiation sources on the basis of a compact (preferably table-top) accelerator.

28 January 2014

ERL beam dynamics group meeting

THz program key points

Laser system

- Stable operation and diagnostics
- Generation of Ti:Sa 3rd harmonic (265nm) fs laser beam
- Pointing, energy, mode stability @ 265nm
- Micro-bunching
- Accelerator
 - Generation of fs electron beam
 - Ability to measure longitudinal beam profile
 - Vacuum chamber with multi-axis manipulator system

• THz Measurement system

- Reliable measurements of THz radiation spectrum and angular distribution.
- Radiation intensity, Pulse duration, Shot-to-shot and Long-term stabilities.

Q-switch Nd:YAG laser system

to FSTB

28 January 2014

1000×2000

Measurement results

Repetition rate, typ.	12.5 Hz
Central wavelength	266nm
Pulse energy @ 266nm, typ	10µJ
Pulse duration	~10ps
Energy stability 10µJ @ 266nm	~1%

12

FHI

ERL beam dynamics group meeting

Ô

9999999

Ti:Sa laser system (FSTB)

to Nd:YAG

Factory test results

Repetition rate, max	10Hz
Central wavelength	795nm
Pulse energy before compression	22mJ
Pulse energy after compression	14mJ
Pulse duration w/w-o correction	30/37.7fs
Energy stability 22mJ@800nm	1.6%

28 January 2014

FSTB: General approach

- Integrated laser system with wide tuning ranges:
 - Number of microbunches
 - Microbunch spacing
 - Duration(s), Intensity, position, size.
- On-line monitoring and control
- Feedback (Accelerator <-> Laser)
- Long term stability
- In-house expertise

LUCX beamline and operation modes

'Femtosecond mode"

- Ti:Sa laser
- e-bunch rms length ~100fs
- e-bunch charge < 100pC
- Single bunch train, Micro-bunching 4-16
- Rep. rate 10 Hz
- Experiments: THz program

"Picosecond mode"
Q-switch Nd:YAG laser
e-bunch rms length ~10ps

- e-bunch charge < 0.5 nC
- Multi-bunch train 2- few 10³
- Rep. rate 12.5 Hz
- Experiments: Compton, CDR

28 January 2014

Measurement setup and DAQ

Bunch length measurements

- Direct time-of-flight measurements
 - Streak camera (Profile reconstruction, Single Shot, Expensive, Space-charge limited)
 - Deflecting cavity (Same as above)
 - Cavity-BPM (preliminary) (RMS relative length change, Calibration?)
- Electro-optical methods
 - Profile reconstruction, Single shot
 - http://www-library.desy.de/preparch/desy/thesis/desy-thesis-11-017.pdf
- Methods based on coherent spectrum
 - Spectral measurements
 - Longer wavelengths
 - Lack of broadband detectors
 - Care is needed (absolute calibrations, linearity, spectral responce)
 - Bunch profile reconstruction
 - Complicated mathematics
 - Dependence on radiation generation mechanism

Terahertz Spectrometer for LUCX (The terahertz spectral range roughly extends from 100 GHz to 10 THz)

- KEK LUCX THz program (<u>http://www-atf.kek.jp/thz/</u>) calls for construction of the Terahertz Spectrometer for systematic and robust measurements.
- Spectral and spatial THz radiation measurements are crucial for THz sources development.
- The coherent radiation spectrum information can be used for longitudinal beam size diagnostic and may be used for bunch profile reconstruction (for example Kramers-Kronig analysis).

Michelson Interferometer

The error of measurements is equal to about several tens of nanometers The smallest mechanical resolution achieved at the test bench is 200 nm.

Detectors

Detector	Parameter	Value
Schottky Barrier Diode Detector	Frequency Range	60-90 GHz
	Wavelength Range	3.33-5 mm
	Response Time	~ 250 ps
	Antenna Gain	24 dB
	Input Aperture	30×23 mm
	Video Sensitivity	20 mV/mW
Schottky Diode Quasi-Optical Detector	Frequency Range	100-1000 GHz
	Wavelength Range	3-0.3 mm
	Response Time	Sub-ns
	Antenna directivity	25-35 dB
	Video Sensitivity	500 V/W

	28	January	2014
--	----	---------	------

Quasi-Optical Broadband Detector

- Frequency Range 100- 1000 GHz
- Responsivity 500 V/W typical
- Antenna directivity 25-35 dB nom
- Sub-ns response time
 - ...but calibration done for CW

Measurement setup and DAQ

- Detectors
 - SBD 60 90 GHz
 - SBD 90 140 GHz
 - Gamma detector
 - Quasi-Optical Detector Frequency Range 0.1-1 THz
- DAQ
 - Oscilloscope 1GHz, 5GS/s

Tektronix[®]

Oriental motor

- Similar to CDR (Oriental motors + controllers)
- Raspberry Pi

KEYENCE

Qt GUI, EPICS, python scripts Data format

26

Soft

Experimental results

- Detectors Signal study
 - Schottky Barrier Diode Detector (SBD)
 - Quasi-Optical Broadband Detector (QOD)
- Detectors linearity measurements
- Spectrum measurements

SBD linearity

Autocorrelation dependence measured by SBC

There is not enough information about real coherent radiation spectra. Reconstructed spectra shows only SBD spectral response. Most certainly we need better SBD calibration.

28 January 2014

ERL beam dynamics group meeting

30

QOD signal examples

- The QOD detector connected to external RF line is susceptible to damaging electrostatic discharge (ESD) pulses from the peripherals. As shown from figure (right), the additional external protection device can decrease detector responsivity.
- The QOD signal measured without external ESD protection is shown at figure (left). The detector sensitive increases rapidly, nevertheless it was much lower than what we expected. Nevertheless the quality and intensity of THz QOD signal were enough for polarization and linearity tests.

28 January 2014

QOD linearity

Autocorrelation dependence measured by QOE

Definitely much shorter bunch length is needed for using QOD detector more efficiently.

28 January 2014

ERL beam dynamics group meeting

33

Schedule & Conclusion

- Work in every direction is ongoing
- FSTB
 - startup: from 22 August 2012
 - Full integration & THG by March 2014
- THz chamber & 5D manipulator
 - Installed December 2013
- LUCX diagnostics
 - BPMs, ICT, OTR has to be checked
 - BLM has to be developed
- Measurement setup and DAQ
 - QOD and SBD were checked
 - The Michelson interferometer was commissioned

Near Future plans

- Laser transport line modification (Feb. 2014)
- THz station final installation (Feb. 2014)
- fs e-beam generation (~ Mar. 2014)
 - Coherent radiation spectrum measurement
 - Bunch length reconstruction
 - Deflecting cavity ?
- Collaboration experiments
 - KEK (CSPR, CTR, etc) ~ Apr. 2014
 - Oxford (3D THz structures) ~ Sep. 2014

Resources

- THz program web: <u>http://www-atf.kek.jp/thz/index.html</u>
- LUCX wiki (documentation, e-log, etc.): <u>http://atf.kek.jp/twiki/bin/view/LUCX/WebHome</u>
- QB program web:
 - http://kocbeam.kek.jp/
- <u>E-mails</u>
 - Aryshev Alexander : alar@post.kek.jp
 - <u>Shevelev Mikhail : mishe@post.kek.jp</u>