(追加)周回部 Trackingの進捗状況

ビームダイナミクスWG 2013年1月9日 (2012年12月6日の資料に追加)

加速器第7研究系 島田 美帆

beta 関数の確認 (normal mode)

35MeV加速直後からダンプまでのGPTのラティスを作成した。 Beta関数などが、elegantの結果と一致することを確認した。

追加資料

後半の beta 関数の ずれ

Comparizon of the results between GPT and elegant

空洞で減速後のbeta関数。若干のずれが見られる。

Consistent S2E simulation

• GPTとelegantを使い、空間電荷効果(SC)と CSR wakeをそれぞれ評価した。

- GPT: SCを含めるが、CSR wakeは考慮していない。100kのtrackingでおよそ24h
- elegant:SCは計算不可能だが、CSR wakeの影響を含めたTrackingが0.5hで可能。

横方向のビームサイズ (S2E simulation,7.7pC,GPT)

空間電荷効果によって、x方向に大きなビームサイズの増大が見られる。 (注意:Dumpline最後の2つのQが最新版と異なる。)

横方向のemittance (S2E simulation,7.7pC,GPT)

減速直後のEnyの増加がEnxに比べて10倍近くある。

(注意: Dumpline最後の2つのQが最新版と異なる。)

横方向のemittance (S2E simulation,7.7pC,GPT)

(注意:Dumpline最後の2つのQが最新版と異なる。)

横方向のビームサイズ (S2E simulation,7.7pC,elegant)

Dumplineで数割のoxの増加がある他は、 CSR wakeによるemittance増加はほとんどない。

横方向のemittance (S2E simulation,7.7pC,elegant)

同様に、DumplineのEnxにCSR wakeの影響があるものの それ以外でCSR wakeによるemittance増加はほとんどみえない。 Enyの変動は1%以下である。

Inconsistent S2E simulation

 77pCのSCおよびCSR wakeの影響を調査。
 7.7pCで最適化した受け渡し点の粒子分布から、 ビームサイズ、emittanceを求め、それに従って Gaussian分布を生成。(Inconsistent)

● GPT:SCあり、CSR wakeなし

• Elegant:SCなし、CSR wakeあり

横方向のビームサイズ (noSC, 7.7pC, 77pC)

77pCの入射器のデータがないため、点AでGaussian分布を生成 点Aのox、enxなどは10kの結果を用いたため、ConsistentS2Eとは値が異なる。 周回部Trackingの粒子数は100kとした。

Tracking粒子数依存性

Dependency of the results of S2E simulation on the number of the tracking particles. 0.0045 0.004 0.0035 1k 3k E 0.003 0.0025 XD 0.002 0.0015 0.003 10k 20k 30k 100k 0.0015 300k 0.001 magnet 0.0005 0 20 60 80 40 0 100 0.0035 0.003 1k 0.0025 3k E 0.002 10k 20k 30k 100k 300k 0.001 magnet 0.0005 0 20 40 60 80 0 100 s [m] = c * time

○ 1kから300kまで大きな違いはなかった。

横方向のemittance (noSC, 7.7pC, 77pC)

77pCでは、

Dump lineのenxが20mm-mrad程度になる。 空洞直後のQでenyが2mm-mrad以上になる。

横方向のemittance (noSC, 7.7pC, 77pC)

追加資料

SCのエミッタンスに対する影響:x方向

0ns:受け渡し点、59ns:第1アーク直前、130ns:南側直線部

Enxの電荷量依存性(130 ns)

追加資料

SCのエミッタンスに対する影響:x方向

200ns:第2アーク直前、291ns:空洞直前、302ns:空洞直後

追加資料

SCのエミッタンスに対する影響: y方向 0 ns: 受け渡し点、59ns: 第1アーク直前、130ns: 南側直線部

SCのエミッタンスに対する影響: y方向

200ns:第2アーク直前、291ns:空洞直前、302ns:空洞直後

Enxの
 電荷量依存性(291 ns)

横方向のemittance (noSC, 7.7pC, 77pC)

s [m] = c * time

横方向のビームサイズ (noCSR, 7.7pC, 77pC)

77pCでは、

Dump直前のoxの最大値は3mmでSCによる oxの増加よりも小さい。oyの増加は見られない。

横方向のemittance (noCSR, 7.7pC, 77pC)

まとめ

- ・ 周回部における空間電荷効果(SC)とCSR wakeの影響に っいて、それぞれGPT, elegantのTracking simulationで 調べた。
- ConsistentなS2E simulationは7.7pCで行い、SCとCSRの 影響は小さいことを確認した。
- 受け渡し点でGaissian分布を再生成してTrackingを行い、 77pCの評価を行った。
 - 粒子数依存性についてはまだ調査中だが、ファクターの誤差があると思われる。
 - CSR wakeに比べて、SCの影響は同等かそれ以上であることがわかった。