北側直線部でのQ-Scan法による エミッタンス測定の可能性

高エネルギー加速器研究機構 中村 典雄

2012年12月06日 ビームダイナミックスWGミーティング

現状のスクリーンモニタ配置(矢印)でエミッタンス測定は可能か。

Q-Scan法によるエミッタンス測定(1)

$$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} = \varepsilon_x \begin{pmatrix} \beta_x & -\alpha_x \\ -\alpha_x & \gamma_x \end{pmatrix} = \begin{pmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle \end{pmatrix} \quad (if \ \langle x \rangle = 0)$$
$$\varepsilon_x = \det \Sigma = \Sigma_{11} \Sigma_{22} - \Sigma_{12} \Sigma_{21} = \langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2$$

E — 五行列 (Beam Matrix)の転送

$$\Sigma = R\Sigma_0 R^T = SQ\Sigma_0 Q^T S^T$$

$$R = SQ = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix} = \begin{pmatrix} S_{11} + kS_{12} & S_{12} \\ S_{21} + kS_{22} & S_{22} \end{pmatrix}$$
thin lens近似

$$\Sigma_{11} = S_{12}^2 \Sigma_{110} k^2 + 2 \left(S_{11} S_{12} \Sigma_{110} + S_{12}^2 \Sigma_{120} \right) k + \left(S_{11}^2 \Sigma_{110} + 2S_{11} S_{12} \Sigma_{120} + S_{12}^2 \Sigma_{220} \right)$$

Q-Scan法によるエミッタンス測定(2)

ビーム行列のk依存性

ビームサイズ2乗のk依存性データを2次曲線でfitして、エミッタンスを求める。

空間電荷効果の影響

2次元rmsビームエンベロープ方程式

$$\sigma''_{x} = \frac{\varepsilon_{nx}^{2}}{\gamma^{2}\beta^{2}\sigma_{x}^{3}} + \frac{I}{\gamma^{3}\beta^{3}I_{0}(\sigma_{x} + \sigma_{y})}$$

$$\sigma''_{y} = \frac{\varepsilon_{ny}^{2}}{\gamma^{2}\beta^{2}\sigma_{y}^{3}} + \frac{I}{\gamma^{3}\beta^{3}I_{0}(\sigma_{x} + \sigma_{y})}$$

右辺第1項:熱エミッタンスの項 右辺第2項:空間電荷効果の項 $\sigma_{x}, \sigma_{y}: 水平・垂直rmsビームサイズ$ $<math>I: ピーク電流 \quad I = Q/\sqrt{2\pi\sigma_{t}}$ Q: バンチ電荷 $\sigma_{t}: バンチ長$ $I_{0}: Alfven電流, 17000A$ $\varepsilon_{nx}, \varepsilon_{ny}: 水平・垂直規格化エミッタンス$ $\gamma, \beta: ローレンツ因子, 電子速度/光速度$

空間電荷効果の影響

エンベロープ方程式の右辺2項の比

$$R_x = \frac{I\sigma_x^3}{I_0(\sigma_x + \sigma_y)\gamma\beta\varepsilon_{nx}^2}$$

 $R_y = \frac{I\sigma_y^3}{I_0(\sigma_x + \sigma_y)\gamma\beta\varepsilon_{ny}^2}$

Q-Scan法による測定が有効であるためには、 $R_{x,v} << 1$ であることが必要である。

北側直線部のエミッタンス測定

- (1)単純なQ-scan配置(四極電磁石ースクリーンモニタ間はドリフトスペース)
- (2)四極電磁石ースクリーンモニタ間のドリフトスペース長 L=1.48mを仮定
 - QMAM03-SMAM03間のみL=2.28mを仮定
- (3)7つの配置案について比較検討
- (4) モニタの測定可能ビームサイズ0.1mm(YAG Screenを仮定)
- (5) 規格化エミッタンス 1.0 mm-mrad

Q-Scanパラメータ(1)

E=35.5MeV, *Q*=7.7pC, σ_t =2ps, ε_{nx} = ε_{ny} =1.0 mm-mrad

Scanned Q	A _x [m ⁴]	k _{min} [m⁻¹]	k _{ini} [m⁻¹]	$\sigma_{\!x,min}[um]$	$\sigma_{\!\scriptscriptstyle y}[um]$	R _x
QMAM09	3.815E-07	-0.85578	-0.27347	51.03	1058.33	0.000158
QMAM10	2.714E-07	-0.58790	0.46730	60.50	615.58	0.000165
QMAM11	8.226E-07	-0.90452	-0.66365	34.75	1641.09	0.000065
QMAM12	4.036E-08	1.06274	0.58041	156.90	454.91	0.014069
QMAM01	1.402E-07	-1.38466	-0.66276	84.17	1040.40	0.002008
QMAM02	1.992E-07	-0.78983	0.07614	70.64	708.41	0.000999
QMAM03	9.134E-07	-0.59680	-0.41554	78.27	1143.42	0.000597
Scanned Q	A _y [m ⁴]	k _{min} [m⁻¹]	k _{ini} [m⁻¹]	$\sigma_{\!\scriptscriptstyle \mathrm{y},\mathrm{min}}[um]$	$\sigma_{\!x}[um]$	Rγ
QMAM09	3.798E-07	-0.83107	0.27347	51.03	1025.65	0.000159
QMAM10	1.254E-06	-0.91607	-0.46730	28.14	2052.25	0.000036
QMAM11	4.349E-07	-0.30707	0.66365	47.80	407.82	0.000123
QMAM12	1.098E-06	-0.87403	-0.58048	30.08	1831.87	0.000185
QMAM01	1.036E-07	-1.38466	0.66276	97.94	334.56	0.002771
QMAM02	3.432E-08	-1.09166	-0.07614	170.14	438.80	0.006323
<u></u>						

(1)QMAM03,SMAM03の組み合せは ε_v 測定の可能性はある。

ただし、偏平は大きく、*o_x:o_x=1:10である*。

(2)QMAM10,SMAM10の組み合せはYAGスクリーンでは厳しい。

- (3)QMAM12,SMAM12の組み合せは ε_x 測定の可能性はある(ただし、 A_x 小)。
- (4)QMAM01,QMAM02の組み合せは ε_v 測定の可能性はある(ただし、 A_v 小)。

(5) 空間電荷効果の影響 R_{xy} は測定範囲ではいずれも大きくない。

- 北側直線部のエミッタンス測定の再検討
- (1)1つ前のQMでスキャン(間のQMはオフ)
- (2)四極電磁石ースクリーンモニタ間のドリフトスペース長 L=3.36m

QMAM02-SMAM03間のみL=4.16m

- (3)6つの配置案について比較検討
- (4) モニタの測定可能ビームサイズ0.1mm(YAG Screenを仮定)
- (5) 規格化エミッタンス 1.0/0.3 mm-mrad

Q-Scanパラメータ(2a)

E=35.5MeV, Q=7.7pC, σ_t =2ps, ε_{nx} = ε_{ny} =1.0 mm-mrad

Scanned Q	A _x [m ⁴]	k _{min} [m⁻¹]	k _{ini} [m⁻¹]	$\sigma_{\!x,min}[um]$	$\sigma_{\! m y}[{ m um}]$	R _x
QMAM09	1.966E-06	-0.47773	-0.27347	115.86	1344.70	0.001421
QMAM10	1.399E-06	-0.20984	0.46730	137.34	515.07	0.001651
QMAM11	4.240E-06	-0.52646	-0.66365	78.90	2169.45	0.000830
QMAM12	2.080E-07	1.44080	0.58041	356.20	1361.65	0.022557
QMAM01	7.227E-07	-1.00661	-0.66276	191.10	1722.09	0.020938
QMAM02	1.573E-06	-0.35454	0.07614	198.54	911.25	0.011185

Scanned Q	A _y [m⁴]	k _{min} [m⁻¹]	k _{ini} [m⁻¹]	$\sigma_{\!\scriptscriptstyle extsf{y},min}[um]$	$\sigma_{\!x}[um]$	R _y
QMAM09	1.958E-06	-0.45302	0.27347	116.11	1272.99	0.001427
QMAM10	6.466E-06	-0.53801	-0.46730	63.89	2736.83	0.000353
QMAM11	2.241E-06	0.07098	0.66365	108.51	238.64	0.001582
QMAM12	5.659E-06	-0.49597	-0.58041	68.29	2360.63	0.000660
QMAM01	5.338E-07	0.87508	0.66276	222.35	1297.88	0.032208
QMAM02	2.711E-07	-0.65637	-0.07614	478.23	834.24	0.080720

Q-Scanパラメータ(2b)

E=35.5MeV, Q=7.7pC, σ_t =2ps, ε_{nx} = ε_{ny} =0.3 mm-mrad

Scanned Q	A _x [m ⁴]	k _{min} [m⁻¹]	k _{ini} [m⁻¹]	$\sigma_{\!x,min}[um]$	$\sigma_{\!\scriptscriptstyle \mathrm{y}}$ [um]	R _x
QMAM09	5.898E-07	-0.47773	-0.27347	63.46	736.53	0.004735
QMAM10	4.197E-07	-0.20984	0.46730	75.23	282.11	0.005504
QMAM11	1.272E-06	-0.52646	-0.66365	43.21	1188.25	0.002766
QMAM12	6.240E-08	1.44080	0.58041	195.10	745.81	0.075189
QMAM01	2.168E-07	-1.00661	-0.66276	104.67	943.23	0.069792
QMAM02	4.719E-07	-0.35454	0.07614	108.75	499.11	0.037282

Scanned Q	A _y [m ⁴]	k _{min} [m⁻¹]	k _{ini} [m⁻¹]	$\sigma_{\!\scriptscriptstyle extsf{y}, \min}[extsf{um}]$	$\sigma_{\!x}[um]$	R _y
QMAM09	5.873E-07	-0.45302	0.27347	63.59	697.25	0.004756
QMAM10	1.940E-06	-0.53801	-0.46730	34.99	1499.02	0.001178
QMAM11	6.724E-06	0.07098	0.66365	59.43	130.71	0.005275
QMAM12	1.698E-06	-0.49597	-0.58041	37.41	1292.97	0.002200
QMAM01	1.601E-07	0.87508	0.66276	121.79	710.88	0.107360
QMAM02	8.134E-08	-0.65637	-0.07614	261.94	456.93	0.269065

cERL北側直線部(加速後)

(1)ドリフトスペースを増やすことで最小ビームサイズは全体的に増加した。 (2)ビームの偏平やA_{xv}も全体的に改善される方向になった。

(3)QMAM09,SMAM10の組合せは1.0mm-mradで ε_x , ε_y 測定の可能性はある。

ただし、偏平は大きく、 $\sigma_x:\sigma_x=1:11-12$ である。

(4)QMAM02,SMAM03の組合せは1.0mm-mradで ε_x , ε_y 測定が可能である。

0.3mm-mradでも $\varepsilon_x, \varepsilon_y$ 測定の可能性はある(ただ、 R_y が大きいので注意)。 (5)空間電荷効果の影響 R_{xy} は限定的である。

まとめ(全体)

- 北側直線部のラティス&オプティクスをもとにQ-Scan法によるエミッタンス測定の可能性を調べた。
- スキャンする四極電磁石との距離を1.48-2.28m から3.36-4.16mに増やすことで、現状のモニタ 配置でもx,y方向のエミッタンス測定が共に可能 になりそうだ。