LCSオプティクス&機器配置の検討

ビームダイナミックスWGミーティング 2012年9月6日 中村 典雄

LCS衝突部オプティクス

共振器設置面が90°変わると、水平・垂直ベータトロン関数が入れ替わる。

X方向に偏平

Y方向に偏平

マッチングに問題は生じないか?

マッチング $L_{23}=0.7m(1)$

下流のマッチング例(X方向に偏平の場合)

マッチングL₂₃=0.7m(2)

マッチングに成功した時のK値(L依存性)

どちらの場合も下流のマッチングはL=0.3m-1.0mで可能であった。

マッチングL₂₃=0.4m(1)

下流のマッチング例(X方向に偏平の場合) 100 β_{\times} A4(L23=0.4 m)の場合、下流のみ β_y 80 Y方向に偏平の場合も同様 60 $\beta_{x'}$ β_{y} (m) 衝突点 L=0.4mの場合 40 V 第2アーク中央 20 Q1 Q3 QMIM05-08 Q4 [0 0 6 8 10 4 s (m) L₂₃=0.4m

マッチング $L_{23}=0.4m(2)$

マッチングに成功した時のK値(L依存性)

LCS部の配置・構成の検討(1)

BPM:ビーム位置モニタ(ボタンorストリップ) PRM:プロファイルモニタ(スクリーン等)

この配置・構成を元に必要なスペース(L₂₃, L, L_c)を検討した。

LCS部の配置・構成の検討(2)

(1) Q2-Q3間のスペース: L₂₃=650mm

- スクリーンモニタ(排気ポート付き) + BPM + ベロー

- BPMをボタン型、ベローズ用フランジを片側のみ → L₂₃=570mm

(2) Q1と4連四極電磁石との間のスペース: L=550mm

- ゲートバルブ + BPM + ベロー

(3) 衝突スペース: L_c=1400mmの場合

- BPM(ボタン) + ベロー×2 + スクリーンモニタ + 共振器

- 共振器に排気ポートとベローを付けたい。
- 共振器スペース: ベローなしで810mm、ベロー込みで1050mm

衝突スペースL。を伸ばしたオプティクスを検討する。

オプティクス (L_c=1.4m/L₂₃=0.5m)

オプティクス (L_c=1.5m/L₂₃=0.5m)

オプティクス (L_c=1.6m/L₂₃=0.5m)

オプティクス (L_c=1.6m/L₂₃=0.65m)

LCS 衝突部の K値

中心でのtwiss parameter : β_x=0.038 m, β_y=0.010 m, α_x=0.0, α_y=0.0 両端でのtwiss parameter : β_{x0}, β_{y0}可変, α_{x0}=0.0, α_{y0}=0.0 四極電磁石のK値 : K < 5(K = B'L/Bρ [m⁻¹])

	K _{Q1} [m⁻¹]	K _{Q2} [m ⁻¹]	K _{Q3} [m ⁻¹]	K _{Q4} [m⁻¹]	β _{x0} [m]	β _{y0} [m]
L _c =1.4m L ₂₃ =0.5m	4.99993	-2.22036	3.13091	-2.90227	5.502	1.692
L _c =1.5m L ₂₃ =0.5m	4.99998	-2.18833	3.09997	-2.81418	5.943	1.842
L _c =1.6m L ₂₃ =0.5m	4.99997	-2.16115	3.07118	-2.73522	6.400	2.010
L _c =1.6m L ₂₃ =0.65m	4.99692	-2.12750	2.82709	-2.66801	4.509	2.301

2次の転送行列

中心でのtwiss parameter: β_{x0} =0.038 m, β_{y0} =0.010 m, α_{x0} =0.0, α_{y0} =0.0 両端でのtwiss parameter: β_{x0} , β_{y0} 可変, α_{x0} =0.0, α_{y0} =0.0 四極電磁石のK値: K < 5

	T ₁₁₆	T ₁₂₆	Т ₃₃₆	T ₃₄₆	β _{x0} [m]	β _{y0} [m]
L _c =1.4m L ₂₃ =0.5m	-23.1926	0.9043	9.6235	4.9662	5.502	1.692
L _c =1.5m L ₂₃ =0.5m	-23.6575	0.8948	10.0885	5.1840	5.943	1.842
L _c =1.6m L ₂₃ =0.5m	-24.1291	0.8879	10.5249	5.3897	6.400	2.010
L _c =1.6m L ₂₃ =0.65m	-25.6034	0.9065	9.8574	5.2039	4.509	2.301

運動量変動による影響

LCS直前でのパラメータ値

E = 35.51 MeV ($\gamma\beta$ = 69.4942), ε_{nx} = ε_{ny} = 0.3 mm mrad , σ_t = 3 ps

衝突点でのビームサイズ(シミュレーション結果)

	σ_p/p =	0.3 %	$\sigma_{\!p}/p$ = 1 %		
K < 5	$\sigma_{x}[um]$	$\sigma_{y}[um]$	$\sigma_{x}[um]$	$\sigma_{y}[um]$	
1次転送行列	12.81	6.57	12.81	6.57	
L _c =1.4m/L ₂₃ =0.5m	16.76	7.06	38.08	10.82	
L _c =1.5m/L ₂₃ =0.5m	17.18	7.15	40.12	11.42	
L _c =1.6m/L ₂₃ =0.5m	17.63	7.24	42.21	12.06	
L _c =1.6m/L ₂₃ =0.65m	16.76	7.24	38.12	12.03	

(1) L_cが大きい方が運動量広がり(変動)の影響が大きくなる。
 (2) L₂₃が大きい方が運動量広がり(変動)の影響が小さくなる。

磁場誤差の影響(1)

QのK値に0.1%の誤差を与えたときのβ関数の変化の絶対値

磁場誤差の影響(2)

QのK値に0.1%の誤差を与えたときのβ関数の変化の絶対値

L₂₃が大きい方が磁場誤差の影響は小さい。

設置誤差の影響(1)

Q間のスペースに $\Delta z = \pm 1 \text{mm}$ の誤差を与えた場合の β 関数の変化の絶対値

L,が大きい方が設置誤差の影響は大きい。

設置誤差の影響(2)

Q間のスペースに $\Delta z = \pm 1$ mmの誤差を与えた場合のβ関数の変化の絶対値

L₂₃が大きい方が設置誤差の影響は小さい。

まとめと課題

- ・ 共振器の設置面が90°異なると、水平・垂直ベータトロン関数の値の入れ替えが起こるが、マッチングはとれそうである。ただし、最終オプティクスで確認する必要はある。
- モニタ等の配置を考慮して、衝突部スペースL_cとQ2-Q3間 距離L₂₃を伸ばしたオプティクスを検討した。運動量変動及 び電磁石の磁場誤差と設置誤差のビームサイズへの影響は、L_cが伸びると大きくなり、L₂₃が伸びると小さくなる。
- LCS部での最大のビームサイズとアパーチャを考えると、 ビームロスの観点から大電流では小さな規格化エミッタン ス(例えば10mm・mrad以下)で運転すべきである。
- モニタ等の配置と共振器のスペースが問題ないか確認を とってLCSの配置を決定する。