cERL-LCSオプティクスの検討

ビームダイナミックスWG打ち合せ 2012年7月26日 中村 典雄、島田 美帆、小林幸則

LCS衝突部の配置

L23をパラメータとして変化させてみる。

LCS衝突部案のK値(1)

中心でのtwiss parameter: β_x =0.038 m, β_y =0.010 m, α_x =0.0, α_y =0.0 両端でのtwiss parameter: β_{x0} =3.4281 m, β_{y0} =2.0 m, α_{x0} =0.0, α_{y0} =0.0 四極電磁石のK値: 制限なし(K = B'L/Bp [m⁻¹])

	K _{Q1}	K _{Q2}	K _{Q3}	K _{Q4}
A1: L ₂₃ =0.7m	5.0383150	-2.1720558	2.8206848	-2.8177384
A2: L ₂₃ =0.6m	5.3975836	-2.3200825	2.9450277	-2.8222864
A3: L ₂₃ =0.5m	5.8220883	-2.5038306	3.1009853	-2.8228983
A4: L ₂₃ =0.4m	6.3315802	-2.7395275	3.3035246	-2.8168515
A5: L ₂₃ =0.3m	6.9541551	-3.0558954	3.5795671	-2.7995366
A6: L ₂₃ =0.2m	7.7298912	-3.5101353	3.9837395	-2.7631456

L₂₃を小さくすると、Q1, Q2, Q3のK値が増える傾向にある。

LCS衝突部案のK値(2)

電源による制限(K < 5)を加えてみる。

中心でのtwiss parameter : β_x =0.038 m, β_y =0.010 m, α_x =0.0, α_y =0.0 両端でのtwiss parameter : β_{x0} , β_{y0} 可変, α_{x0} =0.0, α_{y0} =0.0 四極電磁石のK値 : K < 5(K = B'L/Bp [m⁻¹])

	K _{Q1}	K _{Q2}	K _{Q3}	K _{Q4}
A1: L ₂₃ =0.7m	4.9999959	-2.1713004	2.8212314	-2.8159166
A2: L ₂₃ =0.6m	4.9999878	-2.1949430	2.9584610	-2.8544422
A3: L ₂₃ =0.5m	4.9999314	-2.2203553	3.1309068	-2.9022690
A4: L ₂₃ =0.4m	4.9999994	-2.2462713	3.3539505	-2.9628148
A5: L ₂₃ =0.3m	4.9999959	-2.2693195	3.6532954	-3.0411456
A6: L ₂₃ =0.2m	4.9998519	-3.3572658	4.0590077	-2.6399260

L₂₃を小さくすると、Q2, Q3のK値が増える傾向にある。

LCS衝突部オプティクス(1)

< <u>値[m⁻¹]</u>	
Q4	-2.815917
Q3	2.821231
Q2	-2.171300
Q1	4.999996

Q2-Q3間 L₂₃=0.6m

(2) A2

Q1-Q2, Q3-Q4間 0.2m

 β_{x0} =4.3265 m, β_{y0} =1.8898 m α_{x0} =0.0, α_{y0} =0.0 γ_{x0} =0.2311 m⁻¹, γ_{y0} =0.5292 m⁻¹

K值[m ⁻¹]	
Q4	-2.854442
Q3	2.958461
Q2	-2.194943
Q1	4.999988

Q1-衝突点までの距離: 2.5m

(3) A3 Q2-Q3間 L₂₃=0.5m Q1-Q2, Q3-Q4間 0.2m

 β_{x0} =5.5024 m, β_{y0} =1.6915 m α_{x0} =0.0, α_{y0} =0.0 γ_{x0} =0.1817 m⁻¹, γ_{y0} =0.5912 m⁻¹

K <u>値[m⁻¹]</u>	
Q4	-2.902269
Q3	3.130907
Q2	-2.220355
Q1	4.999931

Q1-衝突点までの距離:2.4m

Q1-衝突点までの距離: 2.6m

LCS衝突部オプティクス(2)

Q2-Q3間 L₂₃=0.3m Q1-Q2, Q3-Q4間 0.2m

(5) A5

K值[m ⁻¹]	
Q4	-2.962815
Q3	3.353951
Q2	-2.246271
Q1	4.999999

 β_{x0} =9.9665 m, β_{y0} =1.1677 m α_{x0} =0.0, α_{y0} =0.0 γ_{x0} =0.1003 m⁻¹, γ_{y0} =0.8564 m⁻¹

K <u>値[m⁻¹]</u>	
Q4	-3.041146
Q3	3.653295
Q2	-2.269320
<u>Q1</u>	4.999996

Q1-衝突点までの距離:2.3m

Q1-衝突点までの距離:2.2m

(6) A6 Q2-Q3間 L₂₃=0.2m Q1-Q2, Q3-Q4間 0.2m

 β_{x0} =10.0 m, β_{y0} =6.4071 m α_{x0} =0.0, α_{y0} =0.0 γ_{x0} =0.1 m⁻¹, γ_{y0} =0.1561 m⁻¹

K <u>値[m⁻¹]</u>	
Q4	-2.639926
Q3	4.059008
Q2	-3.357266
Q1	4.999852

Q1-衝突点までの距離:2.1m

ビームサイズ(1次転送行列)

1次の転送行列によるビームサイズ

 $\delta x = R_{11} \delta x_0 + R_{12} \delta x_0'$

 $\delta y = R_{33} \delta y_0 + R_{34} \delta y_0'$

$$\sigma_{x}^{(1)} = \left\langle \delta x^{2} \right\rangle = \sqrt{\left\{ R_{11}^{2} \left\langle \delta x_{0}^{2} \right\rangle + R_{12}^{2} \left\langle \delta x_{0}^{2} \right\rangle - 2R_{11}R_{12} \left\langle \delta x_{0} \delta x_{0}^{\prime} \right\rangle \right\}}$$
$$= \sqrt{R_{11}^{2} \beta_{x0} + R_{12}^{2} \gamma_{x0} - 2 \cdot R_{11}R_{12} \alpha_{x0}} \cdot \varepsilon_{x0}$$
$$\sigma_{y}^{(1)} = \left\langle \delta y^{2} \right\rangle = \sqrt{R_{33}^{2} \beta_{y0} + R_{34}^{2} \gamma_{y0} - 2 \cdot R_{33}R_{34} \alpha_{y0}} \cdot \varepsilon_{y0}$$

色収差の影響

2次までの転送行列によるビームサイズはシミュレーションと良く合う。

2次の転送行列(1)

中心でのtwiss parameter: β_{x0} =0.038 m, β_{y0} =0.010 m, α_{x0} =0.0, α_{y0} =0.0 両端でのtwiss parameter: β_{x0} =3.4281 m, β_{y0} =2.0 m, α_{x0} =0.0, α_{y0} =0.0 四極電磁石のK値: 制限なし

	T ₁₁₆	T ₁₂₆	Т ₃₃₆	T ₃₆₄
A1: L ₂₃ =0.7m	-25.4429	0.8522	8.9556	4.7940
A2: L ₂₃ =0.6m	-26.4443	0.2711	9.2895	4.7447
A3: L ₂₃ =0.5m	-27.5793	-0.3605	9.7201	4.7265
A4: L ₂₃ =0.4m	-28.8654	-1.0532	10.2988	4.7562
A5: L ₂₃ =0.3m	-30.3121	-1.8179	11.1154	4.8629
A6: L ₂₃ =0.2m	-31.9010	-2.6626	12.3339	5.0993

L₂₃を小さくすると、T₁₁₆, T₃₃₆が大きくなる。

2次の転送行列(2)

中心でのtwiss parameter: β_{x0} =0.038 m, β_{y0} =0.010 m, α_{x0} =0.0, α_{y0} =0.0 両端でのtwiss parameter: β_{x0} , β_{y0} 可変, α_{x0} =0.0, α_{y0} =0.0 四極電磁石のK値: K < 5

	T ₁₁₆	T ₁₂₆	Т ₃₃₆	T ₃₄₆
A1: L ₂₃ =0.7m	-25.2175	0.9241	8.8550	4.7658
A2: L ₂₃ =0.6m	-24.1937	0.9148	9.1778	4.8407
A3: L ₂₃ =0.5m	-23.1926	0.9043	9.6235	4.9662
A4: L ₂₃ =0.4m	-22.2207	0.8911	10.2656	5.1723
A5: L ₂₃ =0.3m	-21.2845	0.8724	11.2386	5.5138
A6: L ₂₃ =0.2m	-20.0015	1.2239	7.5718	3.8653

L₂₃を小さくすると、T₁₁₆は小さくなるが、β_{x0}が大きくなる。

運動量変動による影響(1)

LCS直前でのパラメータ値

E = 35.51 MeV ($\gamma\beta$ = 69.4942), ε_{nx} = ε_{ny} = 0.3 mm mrad , σ_t = 3 ps

衝突点でのビームサイズ(シミュレーション結果)

	σ_p/p = 0.3 %		$\sigma_{\!p}/p$ = 1 %	
β _{x0} , β _{y0} 固定	$\sigma_{x}[um]$	$\sigma_{\!y}[um]$	$\sigma_{x}[um]$	$\sigma_{\!y}[um]$
1次転送行列	12.81	6.57	12.81	6.57
A1: L ₂₃ =0.7m	15.87	7.06	33.60	10.83
A2: L ₂₃ =0.6m	16.09	7.10	34.73	11.07
A3: L ₂₃ =0.5m	16.34	7.14	36.02	11.38
A4: L ₂₃ =0.4m	16.64	7.20	37.49	11.81
A5: L ₂₃ =0.3m	16.98	7.30	39.15	12.44
A6: L ₂₃ =0.2m	17.37	7.45	40.99	13.41

L₂₃が大きい方が運動量広がり(変動)の影響は小さい。

運動量変動による影響(2)

LCS直前でのパラメータ値

E = 35.51 MeV ($\gamma\beta$ = 69.4942), ε_{nx} = ε_{ny} = 0.3 mm mrad , σ_t = 3 ps

衝突点でのビームサイズ(シミュレーション結果)

	σ_p/p = 0.3 %		$\sigma_{\!p}/p$ = 1 %	
K < 5	$\sigma_{x}[um]$	$\sigma_{\!_{\mathcal{Y}}}[um]$	$\sigma_{x}[um]$	$\sigma_{\!y}[um]$
1次転送行列	12.81	6.57	12.81	6.57
A1: L ₂₃ =0.7m	15.87	7.06	33.61	10.84
A2: L ₂₃ =0.6m	16.25	7.06	35.57	10.83
A3: L ₂₃ =0.5m	16.76	7.06	38.08	10.82
A4: L ₂₃ =0.4m	17.46	7.06	41.44	10.83
A5: L ₂₃ =0.3m	18.49	7.07	46.10	10.87
A6: L ₂₃ =0.2m	17.94	7.59	43.62	14.22

L₂₃が大きい方が運動量広がり(変動)の影響は小さい。

QのK値に0.1%の誤差を与えたときのβ関数の変化

- 1. 各電磁石一つに誤差を与える。
- 2. 4台全てに同じ誤差を与える。
- 3. FとDで異なる誤差(+0.1%, -0.1%)を与える。

L₂₃が大きい方が磁場誤差の影響は小さい。

設置誤差の影響

Q1-Q2, Q2-Q3, Q3-Q4, Q4-Collision Point間の距離にΔz=±1mmの誤差を与えた場合の β関数の変化(K<5)

L₂₃が大きい方が設置誤差の影響は小さい。

モニタの配置・構成例

モニタが必要であれば、L23はある程度の長さ(0.4-0.5m?)を確保すべきか。

マッチングの例(1)

Q1,Q2及びその下流のQ4台でアーク部とマッチングをとる。

マッチングの例(2)

マッチングの例(3)

まとめと課題

- 運動量変動のビームサイズへの影響は、Q2-Q3 間距離L₂₃が大きい案の方が相対的に小さい。た だし、大きな差ではない。
- 四極電磁石の磁場誤差及び設置誤差の影響は、
 Q2-Q3間距離L₂₃が大きい案の方が相対的に小さい。ただし、大きな差ではない。
- 調整にモニタ等が必要であれば、Q2-Q3間距離
 L₂₃をある程度確保することが有効であろう。
- マッチングを進めて、必要なマッチングのスペー
 スや四極電磁石の配置を検討する。

その他参考資料

LCS衝突部案の例(2)

(1) 案A1

Q2-Q3間 0.7m Q1-Q2, Q3-Q4間 0.2m 农_x=0, 农_y=0

 $\begin{array}{l} \beta_{x0} = 3.4281 \text{ m}, \ \beta_{y0} = 2.0 \text{ m} \\ \alpha_{x0} = 0.0, \ \alpha_{y0} = 0.0 \\ \gamma_{x0} = 0.2917 \text{ m-1}, \ \gamma_{y0} = 0.5 \text{ m-1} \end{array}$

K値[m-1] (SADの定義)			
Q4	-2.81774		
Q3	2.820685		
Q2	-2.17545		
Q1	5.087382		

(1′) 案A1′

Q2-Q3間 0.7m Q1-Q2, Q3-Q4間 0.2m _{α_x=-1, α_y=+1}

 $\begin{array}{l} \beta_{x0} = 3.4281 \text{ m}, \ \beta_{y0} = 2.0 \text{ m} \\ \alpha_{x0} = -1.0, \ \alpha_{y0} = 1.0 \\ \gamma_{x0} = 0.2917 \text{ m} \text{-}1, \ \gamma_{y0} = 0.5 \text{ m} \text{-}1 \end{array}$

K值[m-1]] (SADの定義)
Q4	-2.763439
Q3	2.806767
Q2	-2.300397
Q1	4.868829

(1″) 案A1″

Q2-Q3間 0.7m Q1-Q2, Q3-Q4間 0.2m α_x=+1, α_y=-1

 $\begin{array}{l} \beta_{x0} = 3.4281 \text{ m}, \ \beta_{y0} = 2.0 \text{ m} \\ \alpha_{x0} = 1.0, \ \alpha_{y0} = -1.0 \\ \gamma_{x0} = 0.5834 \text{ m} \text{-1}, \ \gamma_{y0} = 1.0 \text{ m} \text{-1} \end{array}$

K值[m-1	l](SADの定義)
Q4	-5.207753
Q3	2.832603
Q2	-1.980807
Q1	5.207753

Q1-衝突点までの距離:2.6m

Q1-衝突点までの距離:2.6m

Q1-衝突点までの距離: 2.6m

LCS衝突部案の例(3)

(3) 案A4

Q2-Q3間 0.2m Q1-Q2*,* Q3-Q4間 0.2m

 β_{x0} =10.0 m, β_{y0} =6.4072 m α_{x0} =0.0, α_{y0} =0.0 γ_{x0} =0.1 m-1, γ_{y0} =0.1561 m-1

K值[m-1]	(SADの定義)
Q4	-2.639926
Q3	4.059008
Q2	-3.357266
Q1	4.999852

(4) 案B1

Q2-Q3間 0.25m Q1-Q2, Q3-Q4間 0.25m β関数の最大値が100m以下

 $\begin{array}{l} \beta_{x0} = 11.9403 \text{ m}, \ \beta_{y0} = 8.9807 \text{ m} \\ \alpha_{x0} = -9.0171, \ \alpha_{y0} = -2.6590 \\ \gamma_{x0} = 6.8934 \text{ m} - 1, \ \gamma_{y0} = 0.8986 \text{ m} - 1 \end{array}$

K値[m-1] (SADの定義)			
Q4(Q8)	-2.25767		
Q3(Q7)	3.639511		
Q2(Q6)	-3.11304		
<u>Q1(Q5)</u>	4.412806		

(5) 案B2

Q2-Q3間 0.25m Q1-Q2, Q3-Q4間 0.25m β関数の最大値が100m以上

 β_{x0} =5.9524 m, β_{y0} =0.7182 m α_{x0} =0.7209, α_{y0} =1.8359 γ_{x0} =0.2553 m-1, γ_{y0} =6.0852 m-1

K值[m-1] (9	SADの定義)
Q4(Q8)	-2.98771
Q3(Q7)	3.388876
Q2(Q6)	-1.42507
Q1(Q5)	7.154015

Q1-衝突点までの距離:2.1m

Q1-衝突点までの距離:2.25m

Q1-衝突点までの距離:2.25m

2次の転送行列

	T ₁₆₁	T ₁₆₂	T ₃₆₃	T ₃₆₄
A1 (L ₂₃ =0.7m)	-25.2175	0.9241	8.8550	4.7658
A1' (α_x =- α_y =-1)	-26.4301	0.3758	11.1456	5.6492
A1" (α_x =- α_y =+1)	-24.2253	1.2907	7.5751	4.2593
B1	-20.4215	1.8465	7.4242	3.9510
B2	-28.8876	-2.5010	27.6211	11.0325
A2 (L ₂₃ =0.2m)	-20.0015	1.2239	7.5718	3.8653
A3 (L ₂₃ =0.4m)	-22.2207	0.8911	10.2656	5.1723

$$\sigma_x^{(2)} = \sqrt{T_{161}^2 \beta_{x0} + T_{162}^2 \gamma_{x0} - 2 \cdot T_{161} T_{162} \alpha_{x0}} \cdot \varepsilon_{x0} \cdot \frac{\sigma_p}{p}$$

$$\sigma_y^{(2)} = \sqrt{T_{363}^2 \beta_{y0} + T_{364}^2 \gamma_{y0} - 2 \cdot T_{363} T_{364} \alpha_{y0}} \cdot \varepsilon_{y0} \cdot \frac{\sigma_p}{p}$$

衝突点でのビームサイズ(1)

LCS直前でのパラメータ

E = 35.51 MeV ($\gamma\beta$ = 69.4942), $\varepsilon_{nx} = \varepsilon_{ny} = 0.3$ mm mrad, $\sigma_t = 3$ ps

	$\sigma_{p}/p = 0.3 \%$		σ_p/p = 1 %	
	$\sigma_x[\text{um}] (\sigma_x^{(2)})$	$\sigma_{\!y}[um]$ ($\sigma_{\!y}^{(2)}$)	$\sigma_x[\text{um}] (\sigma_x^{(2)})$	$\sigma_{\!y}[{\sf um}]$ ($\sigma_{\!y}^{(2)}$)
色収差なし	12.81	6.57	12.81	6.57
A1 (L ₂₃ =0.7m)	15.87 (9.28)	7.06 (2.58)	33.60 (30.95)	10.83 (8.61)
A1' (α_x =- α_y =-1)	16.06 (9.61)	7.01 (2.45)	34.59 (32.02)	10.49 (8.17)
A1" (α_x =- α_y =+1)	15.69 (8.98)	7.13 (2.77)	32.65 (29.93)	11.33 (9.23)
B1	18.28 (12.96)	8.31 (5.08)	45.20 (43.20)	18.14 (16.94)
B2	18.85 (13.75)	7.05 (2.57)	47.70 (45.83)	10.80 (8.56)
A6 (L ₂₃ =0.2m)	17.94 (12.47)	7.59 (3.79)	43.62 (41.56)	14.22 (12.63)
A4 (L ₂₃ =0.4m)	17.46 (11.79)	7.06 (2.58)	41.44 (39.28)	10.83 (8.61)

(1) α_{x0}, α_{v0}による大きな違いはない。(2) B1, B2はA1-A6と比べて大きな差はない。

磁場誤差の影響(2)

QのK値に0.1%の誤差を与えたときのβ関数の変化

- 1. 各電磁石一つに誤差を与える。
- 2. 4台全てに同じ誤差を与える。
- 3. FとDで異なる誤差(+0.1%, -0.1%)を与える。

α_{x0},α_{v0}による大きな違いはない。

磁場誤差の影響(3)

QのK値に1%の誤差を与えたときのβ関数の変化

- 1. 各電磁石一つに誤差を与える。
- 2. 4台全てに同じ誤差を与える。
- 3. FとDで異なる誤差(+1%,-1%)を与える。

B1は、A1に比べて誤差の影響が大きい。

磁場誤差の影響(4)

QのK値に1%の誤差を与えたときのβ関数の変化

- 1. 各電磁石一つに誤差を与える。
- 2. 4台全てに同じ誤差を与える。
- 3. FとDで異なる誤差(+1%,-1%)を与える。

B2は、A1に比べて誤差の影響が大きい。