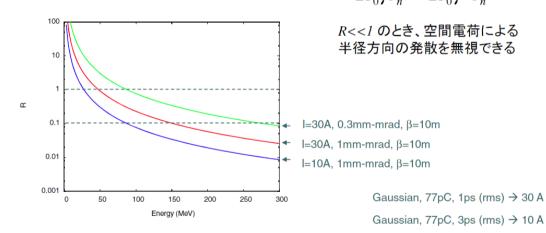

2ループcERLのS2Eシミュレーション

ビームダイナミクスWG 2011年8月31日(水) 13:30 ~

> 加速器第7研究系 島田 美帆

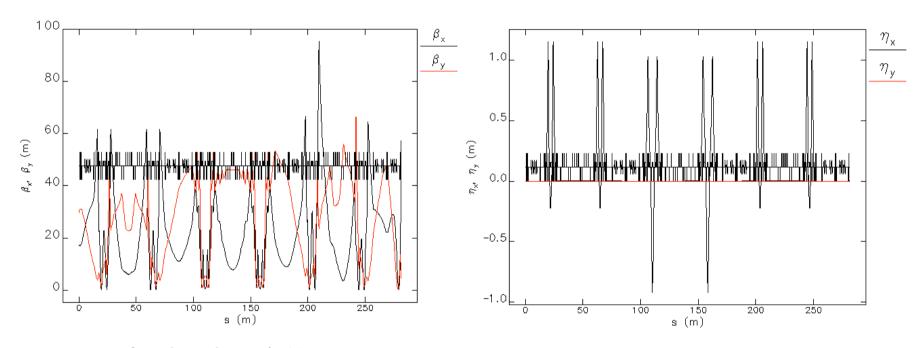
S2E simulationの方針変更


- 前回の報告からの変更
 - 低エミッタンスを目指すために、入射エネルギーを8.5MeV付近に変更。
 - レーザーパルス長も可変とする。
 - 受け渡し点を65MeVに変更し、QS1はGPTで最適化。(同時にQS3も決まる。)
 - 空間電荷効果の影響は無視できないが、周回部のマッチングをとるために点Aを受け渡し点とする。

S2E simulationの手順

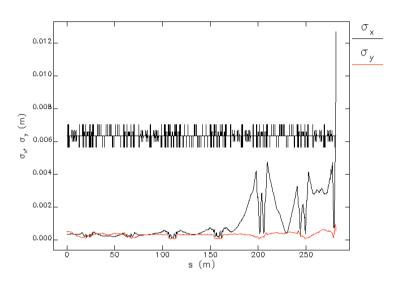
- 1. CSR wakeの影響の少ない周回部opticsをelegantで探し、点Aのtwiss parameterの取り得る範囲を決める。
- 2. 点Aのtwiss parameterは指定した範囲内に入るようにGPTで最適化する。
- 3. 点Aで電子の6D分布を受け継いで、ダンプまでトラッキングを行う。

受け渡し点の空間電荷効果

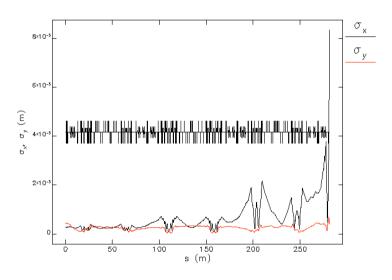


第28回ビームダイナミクスWG資料(羽島さん)より

65MeV, 77 pC, β ~ 30m, ϵ_n ~ 0.8 mm-mrad, σ_r ~ 2 ps, I ~ 13.4 Aの場合、


R ~ 0.9 (無視できるほど小さくはない。)

2loop のβ関数および分散関数

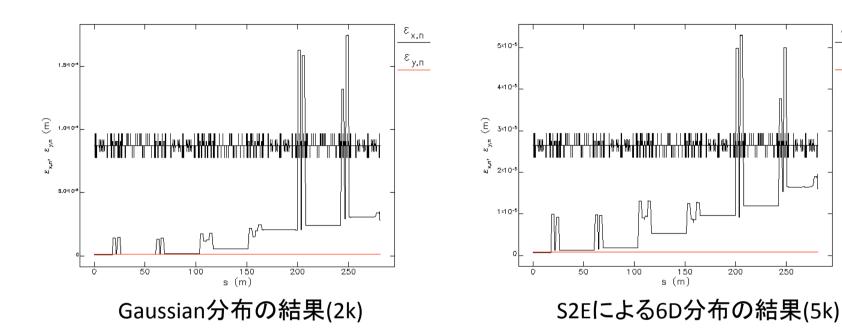


- 受け渡し点(A点)の条件(elegant)
 - β < 100 m, -2 < α < 2 (x,y,同じ)
- A点のパラメータの結果(GPT)
 - P = 68.67 MeV (γp=134.401), βx = 17.2815 m, αx = 0.37, βy = 29.722 m, αy = -1.032
- 210mでβ関数が大きくなっているのは、加速直線部のラティスが非対称であることが原因。
- 2 Loop全体のR₅₆は-0.001程度。
- トラッキングの粒子数は2k

Gaussian分布と6D simulationの違い(ビームサイズ)

Gaussian分布の結果(2k)

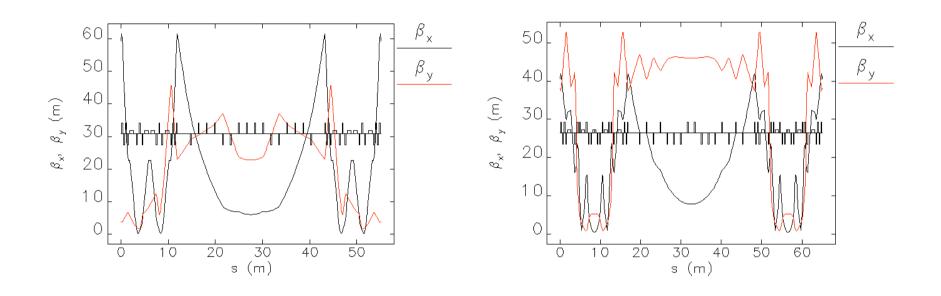
S2Eによる6D分布の結果(5k)


- 受け渡し点(A点)のパラメータ
 - Gaussian分布(2k)、77pC, ε_{nx} = 0.798 mm-mrad, ε_{nv} = 1.06 mm-mrad, σ_{dp} = 5.37e-4, σ_{s} = 0.6 mm
 - 6D分布(5k)、77pC, $ε_{nx}$ = 0.602 mm-mrad, $ε_{ny}$ = 0.793 mm-mrad, $σ_{dp}$ = 5.53e-4, $σ_{s}$ = 0.62 mm
- Gaussian分布の結果は、電子の6D分布の結果と大きく異なる傾向にある。ただし、粒子数の違いにもよる。
- ダンプ直前の最大ビームサイズ
 - Gaussian分布 : 12.7 mm
 - 6D分布 : 8.3 mm

5kのβ関数の結果は2kと異なることに注意。

Gaussian分布と6D simulationの違い(エミッタンス)

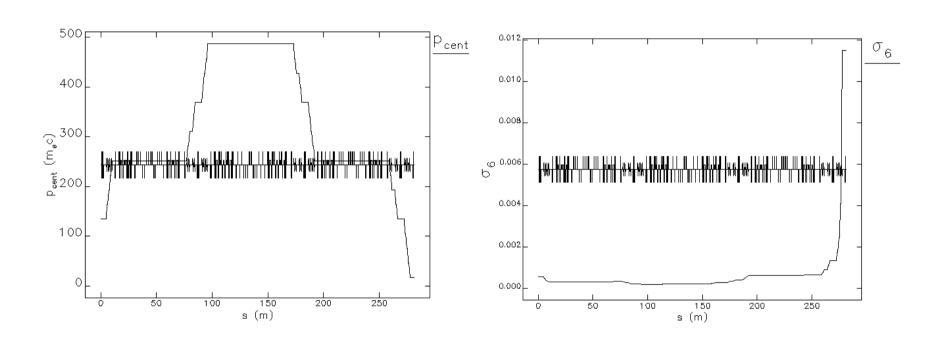
ε,,п


ε_{у,п}

外側ループを戻ってくるときに、CSR wakeが原因と思われるエミッタンス増大がある。(別のスライドでCSR wake無しの計算結果を載せる。)

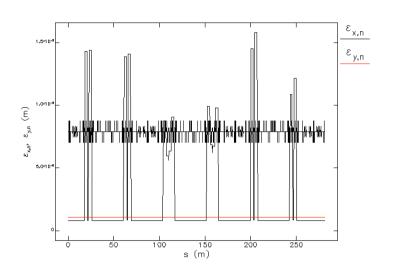
$arepsilon_{nx}$ [mm-mrad]	Merger	Inner loop-1	Outer loop	Inner loop-2	Extraction
Gaussian分布(2k)	0.8	1.2	5.3	24	29
6D 分布(5k)	0.6	1.2	5.3	12	16

内側・外側ループのβ関数

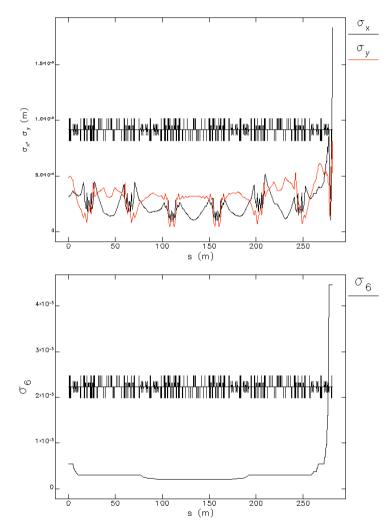

- 内側・外側ループの直線部は、Qの配置を均等にして、位相の進みを調整しやすいようにした。
- 位相の進み

– 内側ループ : 1.569632e+001 **〜** 2.5 x 2π

- 外側ループ: 2.092388e+001 ~ 3.3 x 2π


内側ループの位相調整は容易であったが、外側ループは困難であった。

エネルギーおよびその広がりの推移


- ダンプ直前でエネルギー広がり(σ₆)が0.01を超える。
- 複数のエネルギーが通過するQのK値はpCetralOの値を取り出して、自動的に調整している。

CSR wakeが無視できる場合 (7.7 x 10⁻²⁰ C)

77pCの場合と比べて

- ε_{nx}の増加が無視できるほど小さい。
- ダンプ直前のσ_x
 - 1.8 mm (CSR wake無し)
 - 12mm (77pC)
- ダンプ直前のσ₆
 - 4.46 e-3 (CSR wake無し)
 - 0.0115 (77pC)

まとめ

- 低いエミッタンスを目指して、再計算を行った。
 - 入射エネルギーやレーザーパルス長を可変とした。 (結果、入射エネルギー8.5MeV付近となった。)
 - 受け渡し点を65MeVとし、QS1はGPTで最適化を行った。
- 2loop周回部で適切なβ関数・ビームサイズになるように工夫した。
 - あらかじめ、周回部でCSR wakeの影響の少ないopticsを探索を行い、 点Aのtwiss parameterの範囲を指定した。
 - ループ直線部の位相調整を行った。
- 今回は、偶然、うまく繋ぐことのできるopticsが見つかった。
- 今後の課題
 - エネルギー回収後のGPTによるトラッキングを試みる。
 - 確実に繋げられるような手法を見つける。