ERL主空洞の要求RF安定度について

2011年8月31日(水)13時30分 ビームダイナミックスWG打合せ 中村 典雄

ERLのパラメータと特長

- 運動量・エネルギー幅 $\sigma_{p}/p \approx \sigma_{E}/E \approx 10^{-4}$ (通常モード:on-crest加速) $\sigma_{p}/p \approx \sigma_{E}/E \approx 10^{-3}$ (バンチ圧縮モード:off-crest加速)
- バンチ長

 $\sigma_t \approx 1-3 \text{ ps}$ (通常モード: on-crest加速)

 $\sigma_t < 100 \text{ fs} ($ バンチ圧縮モード: off-crest加速)

- → 小運動量幅、超短バンチは蓄積リングでは実現困難である。
- → これらの特長を活かすには高いRF安定度が要求される。

運動量変動による光源輝度の劣化

● 実効アンジュレータスペクトル幅

輝度が劣化しない条件:
$$\frac{\Delta p}{p} << \frac{\sigma_p}{p}$$

運動量変動による短パルス特性の劣化

● 実効バンチ長(バンチ圧縮モード)

運動量変動は到着時間ジッターによる実効的なバンチ長増大を生む。 短パルス特性が劣化しない条件: $\sigma_t >> \Delta T \Rightarrow \frac{\Delta p}{p} << \frac{c\sigma_t}{R_{56}} \quad (\beta \approx 1)$

RF変動と運動量変動

• 通常モード(on-crest加速)

$$V = V_0 \cos\phi_0 \approx V_0$$

$$\Delta V = \Delta V_0 \cos\phi_0 - \Delta V_0 \Delta \phi_0 \sin\phi_0 - \frac{V_0 (\Delta \phi_0)^2}{2} \cos\phi_0 \approx \Delta V_0 - \frac{V_0 (\Delta \phi_0)^2}{2}$$

$$\frac{\Delta p}{p} \approx \frac{\Delta V}{V} = \frac{\Delta V_0}{V_0} - \frac{(\Delta \phi_0)^2}{2} \quad (eV >> \gamma_i mc^2, \beta_i \approx 1)$$

$$\Rightarrow \left(\frac{\Delta p}{p}\right)_V = \frac{\Delta V_0}{V_0}, \quad \left(\frac{\Delta p}{p}\right)_{\phi} = \frac{(\Delta \phi_0)^2}{2}$$

● バンチ圧縮モード(off-crest加速)

$$\begin{split} V &= V_0 \cos \phi_0 \\ \Delta V &= \Delta V_0 \cos \phi_0 + V_0 \sin \phi_0 \cdot \Delta \phi_0 \\ &= \frac{\Delta p}{p} \approx \frac{\Delta V}{V} = \frac{\Delta V_0}{V_0} + \Delta \phi_0 \cdot \tan \phi_0 \quad \left(eV >> \gamma_i mc^2, \beta_i \approx 1\right) \\ &\implies \left(\frac{\Delta p}{p}\right)_V = \frac{\Delta V_0}{V_0}, \quad \left(\frac{\Delta p}{p}\right)_{\phi} = \Delta \phi_0 \cdot \tan \phi_0 \end{split}$$

空洞全体の要求RF安定度(1)

RF安定度の条件(1):運動量変動 << 運動量幅

- 通常モード(on-crest加速) $\left(\frac{\Delta p}{p}\right)_{V,\phi} << \frac{\sigma_p}{p} \approx 10^{-4}$ $\Rightarrow \frac{\Delta V_0}{V_0} << 10^{-4}, \ \Delta \phi_0 << 0.81^{\circ}$
- バンチ圧縮モード(off-crest加速) $\left(\frac{\Delta p}{p}\right)_{V,\phi} << \frac{\sigma_p}{p} \approx 10^{-3}$ $\Rightarrow \frac{\Delta V_0}{V_0} << 10^{-3}, \ \Delta \phi_0 << 0.066^\circ \quad (\phi_0 = 15^\circ)$

空洞全体の要求RF安定度(2)

RF安定度の条件(2): 到着時間変動 << バンチ長

- バンチ圧縮モード(off-crest加速) $\left(\frac{\Delta p}{p}\right)_{V,\phi} << \frac{c\sigma_t}{R_{56}} \approx 10^{-4} \quad (\sigma_t = 50 fs, R_{56} = 0.15m)$ $\Rightarrow \frac{\Delta V_0}{V_0} << 10^{-4}, \ \Delta \phi_0 << 0.021^\circ \quad (\phi_0 = 15^\circ)$
- 通常モード(on-crest加速)

特にRF安定度に制限を与えない($R_{56}=0$)。

(*R*₅₆≠0の場所では別途考慮する必要がある。)

要求RF安定度(主空洞全体):振幅<<0.01%,位相<<0.02°

RF変動と運動量変動(ユニット単体)

- $V = \sum_{i=1}^{N} V_{u0,i} \cos \phi_{u0,i} \approx N V_{u0} \cos \phi_{u0} \quad \left(V_{u0,1} \approx \dots \approx V_{u0,N} \approx V_{u0}, \quad \phi_{u0,1} \approx \dots \approx \phi_{u0,N} \approx \phi_{u0} \right)$
- RF振幅位相が同相で変動する場合 $\Delta V = N(\Delta V_{\mu 0} \cos \phi_{\mu 0} + V_{\mu 0} \sin \phi_{\mu 0} \cdot \Delta \phi_{\mu 0})$
 - $\frac{\Delta p}{p} \approx \frac{\Delta V}{V} = \frac{\Delta V_{u0}}{V_{u0}} + \Delta \phi_{u0} \cdot \tan \phi_{u0} \Rightarrow \left(\frac{\Delta p}{p}\right)_{V} = \frac{\Delta V_{u0}}{V_{u0}}, \quad \left(\frac{\Delta p}{p}\right)_{\phi} = \Delta \phi_{u0} \cdot \tan \phi_{u0}$
- RF振幅位相がランダムに変動する場合 $\Delta V = \sqrt{N(\Delta V_{u0})^{2} \cos^{2} \phi_{u0} + NV_{u0}^{2} \sin^{2} \phi_{u0} \cdot (\Delta \phi_{u0})^{2}}$ $\frac{\Delta p}{p} \approx \frac{\Delta V}{V} = \frac{1}{\sqrt{N}} \sqrt{\left(\frac{\Delta V_{u0}}{V_{u0}}\right)^{2} + (\Delta \phi_{u0})^{2} \cdot \tan^{2} \phi_{u0}}$ $\Rightarrow \left(\frac{\Delta p}{p}\right)_{u} = \frac{1}{\sqrt{N}} \frac{\Delta V_{u0}}{V_{u0}}, \quad \left(\frac{\Delta p}{p}\right)_{u} = \frac{1}{\sqrt{N}} \Delta \phi_{u0} \cdot \tan \phi_{u0}$

→ ユニット間の変動がランダムな場合、ユニットの安定度はN^{1/2}緩くなる。

ユニット毎の要求RF安定度(1)

RF安定度の条件(1):運動量変動 << 運動量幅

- RF振幅位相が同相で変動する場合 通常モード $\Rightarrow \frac{\Delta V_{u0}}{V_{u0}} << 10^{-4}, \Delta \phi_{u0} << 0.81^{\circ} (\phi_{u0} = 0^{\circ})$ バンチ圧縮モード $\Rightarrow \frac{\Delta V_{u0}}{V_{u0}} << 10^{-3}, \Delta \phi_{u0} << 0.066^{\circ} (\phi_{u0} = 15^{\circ})$
- RF振幅位相がランダムに変動する場合(N=200)
 通常モード ⇒ $\frac{\Delta V_{0u}}{V_{0u}} << 1.4 \times 10^{-3}, \ \Delta \phi_{0u} << 3.0^{\circ} (\phi_{u0} = 0^{\circ})$

バンチ圧縮モード ⇒
$$\frac{\Delta V_{0u}}{V_{0u}} << 1.4 \times 10^{-2}, \Delta \phi_{0u} << 3.0^{\circ} (\phi_{u0} = 15^{\circ})$$

ユニット毎の要求RF安定度(2)

RF安定度の条件(2): 到着時間変動 << バンチ長 (バンチ圧縮モードのみ)

- RF振幅位相が同相で変動する場合 $\Rightarrow \frac{\Delta V_{u0}}{V_{u0}} << 10^{-4}, \Delta \phi_{u0} << 0.021^{\circ} (\phi_{u0} = 15^{\circ})$
- RF振幅位相がランダムに変動する場合(N=200)

$$\Rightarrow \frac{\Delta V_{u0}}{V_{u0}} << 1.4 \times 10^{-3}, \ \Delta \phi_{u0} << 0.30^{\circ} \ (\phi_{u0} = 15^{\circ})$$

要求RF安定度(ユニット単体):振幅<<0.1-0.01%,位相<<0.3-0.02°

まとめ

- 3GeVERL光源で要求される主加速空洞のRF振幅位相 安定度を概算で見積もった。
- ERLの持つ超高輝度や超短パルス特性を実効的に劣 化させないためには、主空洞によるビームの運動量(エ ネルギー)変動を10⁻⁴よりも小さく抑える必要がある。
- 主加速空洞のRF振幅位相の安定度は全体としてそれ ぞれ、0.01%、0.01°レベルあるいはそれ以下であること が要求される。
- 主加速空洞ユニット毎のRF振幅位相の安定度はユニット間の変動の相関に依存する。完全なランダム変動では、200ユニットで全体の安定度よりも1桁程度緩くなる。

以前のcERLでの計算結果 (参考)

コンパクトERLの構成とパラメータ

大電流(HC)&低エミッタンス(LE)モード

初期バンチ長	2[ps]
初期規格化エミッタンス	1(HC), 0.1(LE) [mm mrad]
初期運動量偏差	2 × 10 ⁻³
電荷量	77(HC), 7.7(LE) [pC]
入射エネルギー	5[MeV]
加速エネルギー&位相	120[MeV], ~0°

バンチ圧縮(BC)モード

初期バンチ長	1[ps]
初期規格化エミッタンス	1[mm-mrad]
初期運動量偏差	2 × 10 ⁻³
電荷量	77[pC]
入射エネルギー	5[MeV]
加速エネルギー&位相	120[MeV], ~15°

RF振幅誤差の影響(バンチ圧縮モード)

・振幅誤差0.1%で約400fsの時間変動が生じる。

・ R_{56} による時間変動($\Delta T \approx R_{56}/c \times \Delta V/V$)とほぼ一致する。

RF位相誤差の影響(バンチ圧縮モード)

到着時間とバンチ長の位相誤差依存性

- ・位相誤差0.1°で約200fsの時間変動になる。
- ・ R_{56} による時間変動($\Delta T \approx R_{56}/c \times \Delta \phi_{RF} \times tan \phi_{RF}$) とほぼ一致する。

入射タイミング誤差の影響(バンチ圧縮モード)

到着時間とバンチ長の入射タイミング誤差依存性

- ・入射タイミング誤差による時間変化は、RF位相変化による時間変化でほぼ相殺される。
- ・ここでは純粋に入射タイミングのみが変化するという仮定。実際は、その原因となる
 入射部各種誤差により他のビームパラメータと結合。→ 第34、35回BDWG報告(宮島)

パラメータの変動(バンチ圧縮モード)

Error	$\Delta V/V$	$\Delta \phi_{RF}$	Δt_{inj}
	-0.1/0.1 %	-0.1/0.1 °	-200/200 fs
Arrival time	-417/408 fs	204/-208 fs	-9.7/6.0 fs
Bunch length	9.9/6.3 %	3.8/6.7 %	3.6/6.3 %
Momentum	-0.092/0.094 %	-0.045/0.044 %	-0.042/0.041 %
Momentum spread	< 1 %	< 2 %	< 2 %
Hor. emittance	-2.3/5.5 %	2.7/-1.1 %	2.5/-1.0 %
Vert. emittance	4.5/-1.6 %	-1.3/2.1 %	-1.2/2.0 %

*Arrival timeは基準時間からの差。それ以外は基準値に対する相対的変化 ** Hor./Vert. emitanceは共に規格化エミッタンス

RF振幅位相誤差0.1%&0.1°(rms)では到着時間変動の点で不十分である。
 圧縮後のバンチ長56fsより時間変動大きく、実効的なバンチ長増大になる。
 入射タイミング誤差は、200fs(rms)以内であれば大きな問題はない。

パラメータの変動(大電流モード)

Error	$\Delta V/V$	$\Delta \phi_{RF}$	Δt_{inj}
	-0.1/0.1 %	-0.1/0.1 °	-200/200 fs
Arrival time	-25/1.3 fs	-0.11/0.16 fs	-200/200 fs
Bunch length	< 1 %	< 1 %	< 1 %
Momentum	-0.096/0.096 %	< 0.0002 %	< 0.0002 %
Momentum spread	< 1 %	-4.7/7.1 %	-4.4/6.6 %
Hor. emittance	< 1 %	< 1 %	< 1 %
Vert. emittance	< 1 %	< 1 %	< 1 %

- ・RF振幅位相誤差0.1%&0.1°(rms)で当面は大きな問題はない。
- ただし、RF振幅変動0.1%による運動量変動が第1アーク出口での運動量幅
 1.7x10⁻⁴より大きいので、将来のユーザー実験等で問題になる可能性がある。
- ・入射タイミング誤差200fs(rms)で十分である。

パラメータの変動(低エミッタンスモード)

Error	$\Delta V/V$	$\Delta \phi_{RF}$	Δt_{inj}
	-0.1/0.1 %	-0.1/0.1 °	-200/200 fs
Arrival time	-24/2.4 fs	-0.02/0.08 fs	-200/200 fs
Bunch length	< 1 %	< 1 %	< 1 %
Momentum	-0.096/0.096 %	< 0.0002 %	< 0.0002 %
Momentum spread	< 1 %	< 2 %	< 2 %
Hor. emittance	< 1 %	< 1 %	< 1 %
Vert. emittance	< 1 %	< 1 %	< 1 %

・RF振幅位相誤差0.1%&0.1°(rms)で当面は大きな問題はない。

- ただし、RF振幅変動0.1%による運動量変動が第1アーク出口での運動量幅
 2x10⁻⁴より大きいので、将来のユーザー実験等で問題になる可能性がある。
- ・入射タイミング誤差200fs(rms)で十分である。