cERLにおけるバンチ圧縮

東京大学物性研究所 中村 典雄

cERLにおけるバンチ圧縮・復元方式

cERLの構成とパラメータ

バンチ圧縮(BC)モードにおけるパラメータとリニアラティス

初期バンチ長	1[ps]
初期規格化エミッタンス	1[mm-
	mrad]
初期運動量偏差	2 × 10 ⁻³
電荷量	77[pC]
入射エネルギー	5[MeV]
加速エネルギー&位相	120[MeV],
	~15°

・バンチ圧縮モードでほぼビームロスのない電子ビーム光学系の設計に成功した。 ・ビームサイズ改善のために減速位相と加速位相の差を180°でなく182°とした。

バンチ圧縮シミュレーション(2)

バンチの復元と減速位相

- ・減速後のバンチの状態をさらに改善できるか(第2アーク部の六極電磁石の最適化等)。
 ただし、ビームサイズ等も含めて考える必要がある。
- ・減速位相と加速位相の差が180°-2× ϕ_{acc} の場合、状態は悪くなる。

まとめ

- バンチ圧縮とその復元は、off-crestでの加減速とR56がゼロ でない第1、第2アーク部のオプティクスを利用して行う。また、 高次項の補正に六極電磁石を使用する。
- 減速位相はエネルギー回収とバンチ復元のために、180°だけ加速位相から遅らせる。今回は、最終的にビームサイズ改善のために更に2°遅らせた。
- バンチ圧縮モードでビームロスがほぼないような電子ビーム 光学系の設計ができた。ただし、第2アーク部の六極電磁石 の調整方法など、改善の余地はまだ残されているかもしれない。
- 180°-2×
 acc の減速位相の遅れは180°の場合に比べて、

 減速後のバンチ状態を悪化させてしまう。