CSRによるCompton散乱について

ビームダイナミクスWG 2010年9月28日(火) 3号館5階会議室

加速器研究施設 第7研究系 島田 美帆

CSRを使ったCompton 数1を提案しました。

正面衝突の場合 $E_X = 4\gamma^2 E_L$

 E_{X} : Energy of scattered photon E_{L} : Energy of laser γ : Lorentz factor

図: 逆コンプトン散乱の波長範囲・パルス長の比較(レーザー、FELおよびCSR)

*FELコンプトンでは軟X線領域で使用する波長が数10um(~数100fs)となる。 発振波長がバンチ長と同程度のときゲインが下がるため、サブピコ秒の軟X線発生は困難。 **背面から照射すれば、レーザーコンプトン散乱でも数keVのX線が可能。しかしサブピコ秒は困難。

X線源としての逆コンプトン散乱の比較

	Laser-ICS	FEL-ICS	CSR-ICS
設備	レーザー必須	アンジュレータ必須	ミラー・共振器のみ
同期	困難	容易	容易
集光(波長に依存)	容易	容易	困難
帯域	数%	10%?	10%?~白色
バンチ圧縮	困難	困難	容易
サブピコ秒のX線パルス	可能(横から照射)	困難	容易
バンチ圧縮の必要性	なし	なし	X線の波長によって必要

左図:電子のエネルギーとX線のエネ ルギーの関係 • Laser-ICS Ti:Saレーザー(800nm)

- FEL-ICS 国内のFELの発振波長と
- 電子のエネルギーを参考。
- CSR-ICS バンチ圧縮した場合 (バンチ長100fs, CSR波長 30um x 2π)

Coherent Synchrotron Radiation

KEK-PreprintのCSRの計算に大きな誤りがありました。

Optics : 1 Magic mirror

Flux of scattered photons [phs/pulse b.w.0.1%] Flux of CSR [phs/pulse b.w.0.1%] 10^{-8} 10⁶ 10⁻¹⁰ 左:CSRのスペクトル 10⁴ 10-12 10² 右:X線のスペクトル 10⁻¹⁴ 10⁻¹⁶ 10⁰ 帯域が広いことがわかる 10⁻¹⁸ 10-2 (白色) 10^2 10^3 10^4 10^5 10^6 10^7 10⁻¹ 10° 10¹ 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10² Energy of CSR [eV] Energy of scattered photon [eV] X線のパルス当たりの光子数 $: 2 \times 10^5$ phs/pulse X線のフラックス : 2 x 10¹⁴ phs/sec (1.3 GHz) X線のパルス長 : 100 fs (分光すると伸びる可能性もある。)

Optics 2 : Optical Cavity

特定の波長で蓄積する

共に反射率99.98%では1000倍程度の蓄積が見込まれる。

- ✓ アライメントの精度は数10umあれば良さそうなので、外部レーザーよりも容易か?
- ✓ モードマッチングを取るためにMagic mirrorよりも取り込み角度が小さい。
- ✓ 数10um~数100umの範囲では光学結晶と真空層を積み重ねたHRミラーを使用予定。(最近 開発されたもの。M.Tecimer et al, PRSTAB 13, 030703,(2010))

衝突面積の最適化1

ミラーの帯域 $\Delta\lambda/\lambda$ の場合、CSRのパルス長は $1/(\Delta\lambda/\lambda)$ 倍に伸びる。CSRのサイクル数 N_{λ}

$$N_{\lambda} = \frac{1}{\Delta \lambda / \lambda}$$

集光面積を小さくすると、小さな面積で衝突するCSRのサイクル数が減る。

衝突面積の最適化2

Undulator model

X線の光子数 N_x N_X ≈ $\pi \alpha K^2 N_e N_u$ 電子数 N_e とUndulatorの周期数 N_u に比例

ICSに置き換え[K.J.Kim NIM(1994)]

K値とCSRの光子数Nと集光面積w。の関係

集光面積 w_0 とレイリー長 z_R の関係

十分に小さい集光面積で衝突するCSRのサイクル数

Undulatorの周期数N_uと有効なCSRのサイクル数N_x^{effect}の関係

 $K^{2} \propto N / w_{0}$ $w_{0} = \lambda z_{R}$ $N_{\lambda}^{effect} = z_{R} / \lambda$ $N_{u} = N_{\lambda}^{effect}$

ICS model 電子数N_aCSRの光子数Nrに比例・衝突面積w_aに反比例

 $N_{X} \propto NN_{e} / W_{0}$

 $X線光子数N_x$ は N_λ^{effect} に依らない。(ただし $N_\lambda^{effect} < N_\lambda$)

必要以上に小さく絞って衝突するより、大きな衝突面積で多くのCSRのサイクルと衝突させた方がX線の質がいいため、 $N_{\lambda}^{effect}=N_{\lambda}$ とし、 $w_{0}=N_{\lambda}\lambda^{2}$ とした。

最適な衝突面積 $w_0 = N_\lambda \lambda^2$

200 MeV ERLにおけるX線光源

TABLE I: Optical cavity scheme in the Compact ERL : Horizontal acceptance angle are 50 mrad for $\lambda = 190 \ \mu m$ and 110 mrad for $\lambda = 1900 \ \mu m$ for mode matching. Bandwidth of the on-axis X-ray is considered to be $\Delta \lambda_X / \lambda_X \sim \Delta \lambda / \lambda \sim 0.1$ (10%). Pulse duration of the X-ray is same as σ_z/c .

Electron	Charge	σ_z/c	Spot size	CSR	Κ	X-ray	N_X	N_X
energy [MeV]	[nC]	[ps]	$[\mathrm{mm} imes \mathrm{mm}]$	energy [mJ]		energy [keV]	[phs./pulse]	[phs./s]
60	0.077	0.1	0.3 imes 0.3	0.14	0.013	0.4	$1 imes 10^4$	$2 imes 10^{13}$
60	0.5	1	3 imes 3	0.6	0.009	0.04	4×10^4	$0.7 imes10^{13}$
200	0.2	0.1	0.3 imes 0.3	1.0	0.034	4	$2 imes 10^5$	$1 imes 10^{14}$
200	1	1	3×3	2.5	0.017	0.4	$3 imes 10^5$	$3 imes 10^{13}$

- X線光子数
 - パルス当たりのX線光子数は10⁴⁻⁵ phs/pulse程度。
 - フラックスは10¹³⁻¹⁴ phs/s程度。
- X線エネルギー範囲
 - 0.04-4 keVの範囲のX線が得られる。
 - 245 MeV, バンチ長100 fsでは6keV程度のX線が見込まれる。
 - トラッキングの結果では、200MeV以上で50fs以下のバンチ長が見込まれるため、10keVの X線も可能。
- X線のパルス長は100 fs 1psとなる。
- 集光サイズは十分大きいため、電子バンチを小さく集光させる必要がない。

5 GeV-ERLにおけるγ線

TABLE II. Optical cavity scheme in 5-GeV ERL: Horizontal acceptance angles are 12 mrad for $\lambda = 30 \ \mu m$ and 9 mrad for $\lambda = 10 \ \mu m$ for mode matching. Bandwidth of the on-axis γ ray is considered to be $\Delta \lambda_{\gamma} / \lambda_{\gamma} \sim \Delta \lambda / \lambda \sim 0.1 (10\%)$. Pulse duration of the γ ray is the same as σ_z / c .

Electron charge [nC]	σ_z/c [fs]	Spot size $[\mu m \times \mu m]$	CSR energy [mJ]	K	γ-ray energy [MeV]	N_{γ} [phs/pulse]	N _γ [phs/s]
1 0.5	30 10	$\begin{array}{c} 100 \times 100 \\ 30 \times 30 \end{array}$	80 65	0.56 0.87	8 25	$\begin{array}{c} 3\times10^8 \\ 4\times10^8 \end{array}$	$3 imes 10^{16} \ 0.7 imes 10^{17}$

- γ線光子数(b.w.10%)
 - パルス当たりのγ線光子数は10⁸phs/pulse程度。
 - フラックスは10¹⁷phs/s程度。
- 稼働中の一番強いγ線源はDuke大学,FEL-ICSによる10¹⁰phs/s (10 MeV) [IPAC 2010].
- γ線利用は?
 - 原子核実験
 - 陽電子生成のためのγ線
 - マンモグラフィー
- ILC陽電子用γ線に要求されるγ線数:10¹²phs/pulse、10MeV以上と仮定
 - 非常におおざっぱな計算では、10nCで24fsまでバンチ圧縮出来たら可能
 - しかし、インコヒーレント。偏光などは全く考えていない。
 - 上段のスペックはSASE-XFEL(SCSS)とほぼ同じ。CSR-ICSではエミッタンスやエネルギー広がりが一桁以上大きくても問題ないため、さらにバンチ当たりの電荷量を増やすことも可能か?

まとめと今後

- CSRによる逆コンプトン散乱を提案した。
- 2つのオプティクスを提案
 - Magic mirror: 100fsの白色光が可能。一番実験が容易。
 - Optical cavity:帯域10%程度、1000倍の蓄積を目標。
- ERLにおけるスペック(Optical cavity)
 - cERLでは0.04-4keVの軟X線生成が可能。パルス長は100 fs-1ps。
 - パルス当たりの光子数10⁴⁻⁵phs/pulse, Flux10¹³⁻¹⁴phs/s程度
 - 5 GeV ERLでは10MeV付近のγ線が生成可能。
 - パルス当たりの光子数10⁸phs/pulse, Flux10¹⁷phs/s程度
- 今後はCSRをさらに強くすることも検討
 - できれば、CSRを種光として発振させたい。
 - Low levelのジッターを小さくしてもらい、電子のジッターを波長以下になるのが理想。(現状:0.1%のジッターで電子400 fsのジッター)