Multi-turn design for cERL (2)

R. Hajima (羽島良一)

ERL Beam Dynamics Working Group Feb. 17, 2009

configuration of the return arc

bending magnets are ready for 400 MeV, though it might be unnecessary.

5 MeV \rightarrow 65 MeV \rightarrow 125 MeV 9-cell x 2 x 2 This configuration is available with the existing cryogenics.

Quads layout at the linac section

Beam energy at each quad (5 MeV injection, 60 MeV linac)

Pass	Q7	Q5	Q1	Q2	Q3	Q4	Q5	loop
1			5	35	65	65		65
2		65	65	95	125	125	125	125
3	125	125	125	95	65	65		65
4		65	65	35	5			

2-loop = 3-turn = 4-pass

Q7 is the last knob to control the beam envelope for the 3rd and the 4th passes.

betatron functions

betatron functions

Inner loop \rightarrow similar to the CDR design, R₅₆=0, FODO for the back straight Outer loop \rightarrow TBA arc, ρ =2m (ready for 400 MeV), R₅₆=0, FODO for the back straight Linac \rightarrow 9-cell (15 MeV) x 2 cavities x 2 modules

 $5 \text{ MeV} \rightarrow 65 \text{ MeV} \rightarrow 125 \text{ MeV} \rightarrow 65 \text{ MeV} \rightarrow 5 \text{ MeV}$

beam size and longitudinal phase space

CSR emittance growth

➤CSR emittance growth is accumulated turn by turn.

Small emittance is necessary at the outer-loop straight (125 MeV).

>Optimization is available by tuning beam envelope.

compensation of the emittance growth

optimization of QF at the inner FODO section.

 \rightarrow change pass-to-pass phase advance

Beam size variation with QF at the inner FODO

betatron functions & beam size after the "QF optimization"

sigma matrix--input: 2100p-3.ele lattice: 2100p-3.lte

10

Summary

- 2-loop configuration of cERL is presented.
- Tracking simulation with the CSR effects is carried out.
- Emittance growth can be 'partially' compensated by envelope tuning.
 - 1.0 mm-mrad (5 MeV) → 1.4 mm-mrad (125MeV) for 77 pC, 3 ps bunch
- Works remain
 - More realistic design (smaller bending magnets)
 - Bettrer emittance compensation
 - Optics with bunch compression
 - Optics for specific applications (Compton, THz ...)