# Calculation of Coherent Synchrotron Radiation in General Particle Tracer

T. Miyajima<sup>1</sup>, Ivan V. Bazarov<sup>2</sup> KEK-PF<sup>1</sup>, Cornell University<sup>2</sup> 9 July, 2008

#### CSR in GPT

- 1D CSR wake calculation in GPT using D. Sagan's formula.
  - General Particle Tracer (GPT) is a particle tracking code, which includes 3D space charge effect based on a nonequidistant multigrid Poisson solver or a point-to-point method.
  - The routine can calculate 1D-wake functions for arbitrary beam trajectories as well as CSR shielding effect.
  - In particular, the CSR routine does not assume ultrarelativistic electron beam and is therefore applicable at low beam energies in the injector.
- I. V. Bazarov and T. Miyajima, "Calculation of Coherent Synchrotron Radiation in General Particle Tracer", Proc of EPAC 2008, MOPC024
- D. Sagan, "AN EFFICIENT FORMALISM FOR SIMULATING THE LONGITUDINAL KICK FROM COHERENT SYNCHROTRON RADIATION", Proc of EPAC 2006, THPCH024

# Sagan's formula

## Sagan's formula 1 Two particle interaction

- The source particle at point P'.
- An electric field E(P) at the position of the kicked particle at point P and time.
- The Lienard-Wiechert formula

$$\mathbf{E}(P) = \frac{e}{\gamma^2} \frac{\mathbf{L} - L\boldsymbol{\beta}'}{(L - \mathbf{L} \cdot \boldsymbol{\beta}')} + \frac{e}{c^2} \frac{L \times \left[ (\mathbf{L} - L\boldsymbol{\beta}') \times \mathbf{a}' \right]}{(\mathbf{L} - L \cdot \boldsymbol{\beta}')^3}$$

• The CSR term

$$\mathbf{E}_{CSR} \equiv \mathbf{E} - \mathbf{E}_{SC}$$

- Here, the space charge term is  $\mathbf{E}_{sc}(P) \equiv \frac{e\gamma[z\hat{\mathbf{s}} + x\hat{\mathbf{x}} + y\hat{\mathbf{y}}]}{(\gamma^2 z^2 + x^2 + y^2)^{3/2}}$
- The rate of energy change is given by

$$K_{CSR} = e\hat{\boldsymbol{\beta}} \cdot \mathbf{E}_{CSR} = e\hat{\boldsymbol{\beta}} \cdot (\mathbf{E} - \mathbf{E}_{CSR})$$



### Sagan's formula 2 Space charge term

• The space charge term  $e^{\gamma \left[z\hat{\mathbf{s}} + x\hat{\mathbf{x}} + y\hat{\mathbf{y}}\right]}$ 

 $\mathbf{E}_{SC}(P) \equiv \frac{e\gamma[z\hat{\mathbf{s}} + x\hat{\mathbf{x}} + y\hat{\mathbf{y}}]}{\left(\gamma^2 z^2 + x^2 + y^2\right)^{3/2}}$ 

- The longitudinal distance is required to calculate the space charge term.
- The change of the longitudinal position of the source particle is  $L_s z = \beta c(t t') = \beta L$
- The longitudinal distance between P' and P is  $z = L_s - \beta L$



### Sagan's formula 3 Calculation of z on arbitrary orbit

- The orbit is divided into N elements from O.
- The path length:  $L_s = d + v_1$   $v_1 = \sum_{i=1}^{N} d_i$
- **v** and **w** components of the vector **L**:  $L_{v} = v + R \sin \phi \qquad v = v_{1} - v_{3} \qquad v_{3} = \sum_{i=1}^{N} d_{i} \left( \frac{1}{2} \psi_{i} + \frac{1}{2} \psi_{i} g_{i} d_{i} + \frac{1}{6} g_{i}^{2} d_{i}^{2} \right)$   $L_{w} = w - R(1 - \cos \phi) \qquad w = \omega_{2} \qquad \omega_{2} = \sum_{i=1}^{N} d_{i} \left( \psi_{i} + \frac{1}{2} g_{i} d_{i} \right)$



### Sagan's formula 4 Calculation of CSR kick on arbitrary orbit

• **CSR kick:**  $K_{CSR} = 4e^2 \gamma^4 \tau^2 \left\{ \frac{g(\tau^2 - \alpha^2)(\alpha - \tau \kappa)}{(\tau^2 + \alpha^2)^3} + \frac{\tau^2 - \alpha^2 + 2\tau \alpha \kappa}{(\tau^2 + \alpha^2)^3} \right\} - \frac{e^2}{\gamma^2 z^2}$ 

$$\tau = \gamma (d + v_1)$$
  

$$\alpha = \gamma^2 \left( \omega_2 + g d v_1 + \frac{1}{2} g d^2 \right)$$
  

$$\kappa = \gamma (\theta + g d)$$

$$=4e^{2}\gamma^{4}\tau^{2}\left\{\frac{g(\tau^{2}-\alpha^{2})(\alpha-\tau\kappa)}{(\tau^{2}+\alpha^{2})^{3}}+\frac{\tau^{2}-\alpha^{2}+2\tau\alpha\kappa}{(\tau^{2}+\alpha^{2})^{3}}\right\}-\frac{e^{2}}{\gamma^{2}z^{2}}$$

$$z=\frac{v_{1}+d}{2\gamma^{2}}+\left[v_{3}+\frac{g^{2}d^{3}}{6}-\frac{1}{8}\frac{(2\omega_{2}-gd^{2})^{2}}{v_{1}+d}\right]$$

$$R=1/g$$

$$gn' \qquad O$$

#### Procedure of CSR calculation

- 1. Calculate i, which satisfy  $z_i = z_0$
- 2. Calculate  $v_1$ ,  $\omega_1$ , g and d with i
- 3. Calculate  $K_{CSR}$  with i
- 4. Shift z0 and repeat 1 to 3.



#### CSR calculation in GPT

# Commands of GPT/CSR

- Command name
  - csr1Dwakexz();
- Assumption
  - It is assumed that the particles move on x-z plane.
     Namely, the vertical component of the average velocity is zero.
- Options
  - The GPT/CSR has 16 options.

### Options of GPT/CSR

- 1. CSRTimestep (double) (s)
- 2. CSRCalcTstep (double) (s)
- 3. CSRMeshNbin (long)
- 4. CSRBGTolerance (double)
- 5. CSRMeshBoxSize (double)
- 6. CSRMeshNbfac (double)
- 7. CSRMeshStep (double) (m)
- 8. CSRTriangleWidth (double) (m)
- 9. CSRSign (double)
- 10. CSRHshield (double) (m)
- 11. CSRNimage (int)
- 12. CSRDriftLength (double) (m)
- 13. CSRCalcArea (double) (m)
- 14. CSRArcRadius (double) (m)
- 15. CSRArcAngle (double) (rad)
- 16. CSROutputWake (double) (m)

# example of CSR calculation csr dt = 10.0e-12; csr tstep = 0.0; csr Nb = 0;csr bgtol = 1.0e-2; csr nstd = 20.0; csr mNbfac = 0.1; csr mdl = 0.06e-3; csr dtri = 0.6e-3; csr sign = -1.0; csr h = 1.0;csr Nh = 0;csr inids = 10.0;csr xin = -10.0;csr xout = 10.0; csr zin = -10.0;csr zout = 10.0;csr arcr = 0.0;csr arcang = 0.0; csr wfrom = 0.0;csr wto = 0.0;csr wstep = 0.0;

# please comment out the following line
# for calculation without CSR

csr1Dwakexz("CSRTimestep", csr\_dt, "CSRCalcTstep", csr\_tstep, "CSRMeshNbin", csr\_Nb, "CSRBGTolerance", csr\_bgtol, "CSRMeshBoxSize", csr\_nstd, "CSRMeshNbfac", csr\_mNbfac, "CSRMeshStep", csr\_mdl, "CSRTriangleWidth", csr\_dtri, "CSRSign", csr\_sign, "CSRHshield", csr\_h, "CSRNimage", csr\_Nh, "CSRDriftLength", csr\_inids,

"CSRCalcArea", csr\_xin, csr\_xout, csr\_zin, csr\_zout,

"CSRArcRadius", csr\_arcr, "CSRArcAngle", csr\_arcang,

"CSROutputWake", csr\_wfrom, csr\_wto, csr\_wstep);

#### Energy Loss and Spread (1)

- The steady-state energy loss and spread for various beam energies are compared as calculated by GPT/CSR, elegant, and analytical expression for a circular orbit.
- The CSR routine in elegant includes the assumption of ultrarelativistic beam.
  GPT/CSR reproduces the analytical result accurately.

Analytical expression derived by C. Mayes  $\frac{d\varepsilon}{dt} = -\frac{2}{3} \frac{(r_e m_e c^2) c\beta^4 \gamma^4}{\rho^2} N(1 + (N - 1)T(a))$   $a = 3/2 \cdot \gamma 3\sigma_s / (\beta \rho)$   $T(a) = \frac{9}{32\pi} \frac{1}{a^3} \left( e^{\frac{1}{8a^2}} \sqrt{\pi} K_{5/6} \left( \frac{1}{8a^2} \right) - 2\pi a \right)$ 

 $K_{5/6}(x)$ : the modified Bessel function N: the number of election in the bunch  $r_e$ : the classical electron radius

- •Bending radius:  $\rho = 1.0 \text{ m}$
- •Bunch length:  $\sigma_s = 0.6 \text{ mm}$
- •Initial distribution: Gaussian
- •Bunch charge: Q = 80 pC.



# Energy loss and spread (2)

•The results of GPT/CSR and elegant both reproduce well the analytical result for higher beam energy,  $E_0 > 40 \text{MeV}$ .

•The results of elegant and the theory diverge to infinity for  $E_0 \rightarrow 0$ .

•The result of GPT/CSR approaches zero as expected.



50

B.C., Canada, 1997, pp. 1679-1681.

[2] Ya. S. Derbenev. et.al., TESLA FEL-Report 1995-05.

These results show that the GPT/CSR is effective for wide range of beam energies, and can be used to investigate beam dynamics in ERL and FEL photoinjectors.

# CSR shielding effect

Image charge layer

Chamber height, h



The effect of CSR shielding is calculated by GPT/CSR for a circular orbit.



As the shielding height increases, the energy loss approaches to the analytical value.

#### CSR in transient state without shielding

- As an example of CSR effect in a transient state, the CSR wake form is calculated by GPT/CSR after the exit of a bending magnet.
- •Beam energy: 128 MeV •Bending radius:  $\rho = 10.0 \text{ m}$ •Bunch length:  $\sigma_s = 0.3 \text{ mm}$ •Initial distribution: Gaussian •Bunch charge: Q = 80 pC•Shielding chamber height:  $h = \infty$ •Number of image charge layers: 32





### CSR in transient state with shielding



The figures show that the CSR wake reduces as the distance from the exit of the bending magnet increases as expected.

#### CSR in merger section

- As an example, the transverse emittance in a 3-dipole merger of ERL project at Cornell University is calculated by GPT/CSR and elegant for two different conditions:
- (a)  $p_0 = 10$  MeV/c and (b)  $p_0 = 500$  MeV/c.



•Bunch length:  $\sigma_s = 0.3 \text{ mm}$ •Initial distribution: Gaussian •Bunch charge: Q = 80 pC•Initial emittance :  $\mathcal{E}_{nx} = 1 \times 10^{-12} \text{ m rad}$ •Initial betatron function :  $\beta_x = \beta_y = 9 \text{ m}$ •Without shielding and space charge





•For (a)  $p_0 = 10 \text{ MeV/c}$ , the GPT/CSR and elegant results disagree. •For (b)  $p_0 = 500 \text{ MeV/c}$ , the agreement is good demonstrating that GPT/CSR reproduces elegant CSR calculations at higher beam energies as expected.

#### Enhanced 3D Space Charge Routine in GPT

#### Enhanced 3D Space Charge Routine in GPT

 To calculate the space charge field in the 3D mesh-based routine in GPT, the particle coordinates are transformed from the laboratory frame to the rest frame according to

 $\mathbf{r'}_{\perp} = \mathbf{r}_{\perp}, \quad \mathbf{r'}_{\parallel} = \gamma \mathbf{r}_{\parallel}$ relative to the direction of motion.

• When the bunch does not move along the z-axis, the bounding box ends up improperly oriented.



In this case, for example, the transverse emittance incorrectly depends on the angle relative to the z-axis in a straight trajectory.

To fix this problem, we have added a transformation of rotation in the rest frame in the space charge routine.



### Summary

- We have developed a new CSR routine for GPT in order to investigate beam dynamics in ERL and FEL injectors.
- To check GPT/CSR, energy loss and energy spread are calculated by GPT/CSR, elegant and analytical expression.
- The results show GPT/CSR to be effective in a wide range of beam energies.
- We have corrected 3D spacecharge routine in GPT so that it is made applicable to calculating the space charge effect in bending magnets.