

羽島 ERLビームダイナミクスWG 2008年7月9日

・ 「デザイン検討会での指摘事項 ・ _{運転モード毎のパラメータ整合性}

- 200 MeV運転の意義
 - ERL-07の議論
 - 空間電荷効果(宮島)
 - 主加速後のエミッタンス保存?
 - バンチ圧縮?
- o 2-turnの可能性
- o SCAモジュールの収容数
- o 最適なバンチ長 (コンパクトERではあいまいでよい 1-3ps)
 - 放射光:短い方がよい(エネルギー広がり)
 - 空洞:長い方がよい
- o ベローズのRFシールド
 - 超伝導グループに相談、時間かかる。
 - まずは、必要かどうかを確認
 - シールドが3次元構造、隙間からの漏れ、上流からの影 響

「デザイン検討会での指摘事項 周長の可変範囲

- 原田さんに資料を送った。(空洞のスタディに必 要か?ダンプの検討も必要。)
- o ビームダンプのアクセプタンス

• シミュレーション(白神)

- 入射SCAとソレノイドの距離を伸ばす
 - クライオモジュールで制限、計算してみる(宮) 島)
- 空洞設置誤差の許容値
 - シミュレーション(elegant codeを調べる)、ILC より大きな許容値?
 - エミッタンス増大のメカニズムは複数ある
 - モジュール内の誤差は修正できない?

PARMELA simulations (simple drift)

Parabolic, 77pC, 1ps (rms) \rightarrow 17.6A

60 MeV の場合、空間電荷の有無によるエンベロープの差異が認められる。 ただし、エミッタンスに対する影響は小さい。

PARMELA simulations (FODO channel)

Parabolic, 77pC, 1ps (rms) \rightarrow 17.6A

60 MeV の場合、空間電荷の有無によるエンベロープの差異が認められる。 ただし、エミッタンスに対する影響は小さい。

PARMELA simulations (linear emittance growth in a drift)

60 MeV の場合、空間電荷エミッタンス増大が無視できない。 ただし、四極磁石等による収束が加わるので、実際のエミッタンス増大は これより小さい。 Linear emittance growth は2乗和の平方根で効く。

• • • まとめ

- 60 MeV 運転では、空間電荷によるビームの発散を無 視できない。
 - 周回軌道のビームエンベロープは、空間電荷を考慮して 設計しなければならない。
 - ビームエンベロープがバンチの時間プロファイルに依存 する。(縦方向・横方向を分離できない)
 - 設計、運転ともに複雑になる。
 - ただし、エミッタンス増大は問題ないレベル。
- 200 MeV 運転では、空間電荷は無視できるので、以 上の問題は生じない。
- o バンチ圧縮、その他の点については、さらに検討。