垂直方向の分散関数と スキューの検討

ビームダイナミクスWG 2015年10月1日

加速器第7研究系 島田 美帆、中村 典雄

5/29のデータ

- IPAC'15(坂中さん発表)の資料のために分散関数を測定した日
 - ML2の振幅を変えたときの軌道の変化から分散関数を推定。
 - ・BPMの測定誤差は0.2mmとする。一昔前のx 1.2の補正ファクターは入ってない。
 - 19:00頃~ 第1アークのみ(-0.2MV, -0.1MV, 0MV, +0.1MV, +0.2MV)
 - 22:00頃~ 第1&2アーク(-0.2MV, 0MV, +0.2MV)
 - 垂直方向のTempRefが正確にオフセットされており、信頼度の高いデータ

BPMによる分散関数の測定

- •19:00頃の垂直方向のデータ
 - -0.2 MV, -0.1MV, 0MV, +0.1MV, +0.2MVの5つのデータ
 - 第1アーク出口付近で非線形性が現れている。+0.2MVのデータで非線 形性が目立つ

垂直方向分散関数発生源の調査

- ・垂直方向の分散関数が発生する場所を推定
 - 分散関数を測定中の190014.log(自動取得)をelegantの台本に入力。
 ある1点でη'y≠0が発生したとして分散関数を計算。

 - ・ BPMIM01でBPMの測定値と一致するようにη'yを設定。
- 第1アーク手前の広範囲で発生しているのではないか。
 - 下図のs=10mまでは目立ったnyがないため、nyはその下流から発生していると考えられる。もし、主空洞付近が原因ならダンプジケイン直後のnyが大きいはず。
 - BPMAM02付近からnyが目立つようになる。
 - BPMAM04よりBPMIF01がnyが大きいため、QMAM04~QMIF01の間にも発生源があると思われる。(QMAM04はy方向に強く収束しているため。)

これまでの分散関数の測定結果の比較Ⅰ

- 5/29(金)
 - 第1アークだけ調整した時と第2アークも調整した時の2回。
 - どちらもほぼ同じ応答。同じ日では再現性あり。
- 6/4 (木)
 - ・ 数値データは残っていないが、画像記録によると、分散関数調整後では第1アークの ηyo 漏れは十分小さくなっている($\Delta y < 1 \text{ mm?}$)。
- 6/18(木)
 - 第1アーク内部から5/29と異なる。
- 6/19(金)
 - この日は特別に分散関数が小さい。
 - 電子ログによると、QMIF01とQMIF06の中心通しをやり直したら、分散関数が減少した。
 - しかし、主空洞直後の軌道が6/18以前のものと違うため、主空洞手前の軌道にも 依存しているかもしれない。
- 6/25(木)
 - 数値データは残っていないが、画像記録によると、分散関数調整後では第1アークのηyの漏れは十分小さくなっている(Δy<1 mm?)。

分散関数ηγの傾向

- 1. 北側直線部でηyが下降する傾向
- 2. BMIF01でもηyが下降する。
 - 手前のQMAM04では垂直方向に収束しているため、BMIF01で発生していると考えられる。

対策案

- 1. アークの入口でnyをゼロに近づけると、分散関数がアークで大きくならない。
 - しかし、具体的な方法は不明。
 - ベストオプティクスは6/19、QMIF01と06の中心を丁寧に通していた。
- 2. アークに設置したスキューを用いる。
 - 6極電磁石の補正コイルがスキューの役目を果たす。

分散関数画像記録

- ・数値データを残していない6/4と6/25の分散関数の画像記録
- ・第2アーク付近は、垂直方向でTempRefが正しく取れてない可能性がある。

偏向電磁石のカップリング

- BMIF01によるηの変化の比率は、ηx: ηy~10:1である。
- 2015/6/3に測定したBMIF04のステアリングの応答結果では、10%の カップリングは見られない。
 - ZHQMIF04のステアリングにキックをCam17で測定。
 - 間のQは残留磁場を打ち消す量だけ励磁している。
 - 水平と垂直方向の傾きの比は1000:1であり、カップリングは0.1%のオーダーであった。
 - BMIF01は他の45度偏向電磁石と違う時期に作製しているが。。。次回のス タディで測定する。

Skew電磁石によるマッチング

測定値を参考にnyを模擬して、アクロマートにするマッチングを試みる。

- 初期設定
 - ダンプシケイン直後にη'y=-0.0035を設定し、BPM信号を模擬した。また、ηx=ηy=0, η'x=0とした。
 - 測定値と同じように、第1アーク出口でny=-0.25m程度となるように
 - 電磁石の設定は190014.logを入力
 - マッチング前の水平方向の分散が閉じていないのはそのため。
- 6極電磁石を45度回転したQUADと仮定してマッチング
 - マッチング条件:第1アーク出口でηx=ηy=0, η'x=η'y=0
 - 変数:2台の6極電磁石、ZSQIF02, ZSQIF04
 - 手順:ZSQIF02と04でηy=η'y=0の解を見つけた後、QMIF05,06 の2台でηx=η'x=0, η'x=η'y=0の解を見つける(2段階)

	K [m-2]	B' [T/m] @20MeV
ZSQIF02	0.19	0.012
ZSQIF04	-0.07	-0.0047

Skew四極電磁石のK値(L=0.1 m)

	Before K [m-2]	After K [m-2]		
QMIF05	7.53	7.57		
QMIF06	-1.98	-2.20		
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー				

	Before [m]	After [m]
R56	-0.0236	-0.0255

マッチング前後のR56の変化

マッチング前後の分散関数の変化

ビーム調整の方法(暫定案)

R56の測定方法:従来と同じ。 垂直方向はρ=∞なので、ηyはR56に影響を与えず。

ビームの調整方法

- 1. まずは北直線部で分散関数を抑えてみる。
 - QMIF01とQMIF06の中心通しなどをしっかりと行う?(6/19)
 - 具体的な調整方法は不明である。
- 2. ZSQIF02とZSQIF04でηy=η'y=0とマッチング を行う。
 - SXIF02とSXIF04の比率は-1:2
- QMIF05~QMIF06の2つで、 nx=n'x=0、 ny=n'y=0のマッチングを行う。
 - ほとんどQMIF06しか使わない。
- 4. R56がずれた場合、専用パネルで調整。 (QMIF01-06)
 - 計算上ではほとんど変化なし
- 5. 3の調整で分散が漏れたら、1からやり直し。

Skew電磁石によるマッチング

- 初期設定
 - ・ ダンプシケイン直後にη'y=0.0035を設定。また、ηx=ηy=0, η'x=0とした。
 - 測定値と同じように、第1アーク出口でny=0.25mとなるように設定。
 - 電磁石の設定は190014.logを入力
 - マッチング前の水平方向の分散が閉じていないのはそのた
- 6極電磁石を45度回転したQUADと仮定して 仁臣
 - マッチング条件:第1アーク出口でηx=ηy=0
 - 変数:4台の6極電磁石、SXIF01-04
 - 手順:SXIF01と04でny=n'y=0の解を の解を見つける(2段階) SXIF01-04でηx=η′x=0, η′x=η′y=0

	K [m-2]	B' [T/m] @20MeV
SXIF01	1.99	0.133
SXIF02	-2.58	-0.172
SXIF03	-2.64	-0.176
SXIF04	2.06	0.137

第1アークのR56: -0.02 [m](前)→ -0.14 [m](後) マッチング前後の分散関数とR56の変化

Skew四極電磁石の パラメータ L=0.1 m