ビームロスポイントの候補

ビームロスの見積もりのための 各種放射線測定

- 2015年4月2日の運転について -

Ver. 4 (2015.4.11 updated)

放射線科学センター 松村, 豊田, 三浦, 穂積

■ 運転後のビームラインサーベイ+スペクトル測定
 ■ ビームラインダクト表面の金の放射化測定
 ■ ビームラインダクト表面のTLDによる線量測定

坂中さんの天井上サーベイ

金箔試料名規則

金箔及びTLD設置場所(第1アーク部)

金箔設置場所(南直線部)

コイルの面から2cm

金箔設置:2015.04.02午前 金箔回収:2015.04.03午前

金箔設置場所(LCS部, 第2アーク部)

Au放射化箔のイメージングプレート(IP)測定

試料写真

Au放射化箔の生成放射能(グラフ)

MARS15によるAu放射化の位置による変化

Au箔の放射化と場所の対応図

TLD線量測定結果(第1アーク部)

ビームラインサーベイ結果(抜粋)

サーベイ実施日時:2015.4.3 10:06-10:57 サーベイ場所:周回部と取り出しラインのマグネット等の出口付近ダクト表面 検出器:NaIサーベイメーター(TCS-171,SN:203A5486+202Y3732(制御室常備品)) 単位:μSv/h (BG込み)

*0.2µSv/h以上の線量率の場所のみ表示

ビームロスの見積もりのための 各種放射線測定

- 2015年4月3日の運転について -

Ver. 4 (2015.4.16 updated)

放射線科学センター 松村

■ 運転後のビームラインサーベイ+スペクトル測定
 ■ MARS15によるQMIM07ビームロスの見積もり

4月4日ビームラインサーベイ結果(西側)

サーベイ実施日時:2015.4.4 11:10-11:35 サーベイ場所:周回部と取り出しラインのマグネット等の出口付近ダクト表面 検出器:NaIサーベイメーター(TCS-171,SN:203A5486+202Y3732(制御室常備品)) 単位:μSv/h (BG込み)

*有意な線量計測のあった場合のみ線量率を表示

4月4日ビームラインサーベイ結果(東側)

サーベイ実施日時:2015.4.4 11:10-11:35 サーベイ場所:周回部と取り出しラインのマグネット等の出口付近ダクト表面 検出器:NaIサーベイメーター(TCS-171,SN:203A5486+202Y3732(制御室常備品)) 単位:µSv/h(BG込み)

4月6日ビームラインサーベイ結果(西側)

サーベイ実施日時:2015.4.6 9:22-10:00 サーベイ場所:周回部と取り出しラインのマグネット等の出口付近ダクト表面 検出器:NaIサーベイメーター(TCS-171,SN:203A5486+202Y3732(制御室常備品)) 単位:μSv/h (BG込み)

4月6日ビームラインサーベイ結果(東側)

サーベイ実施日時:2015.4.6 9:22-10:00 サーベイ場所:周回部と取り出しラインのマグネット等の出口付近ダクト表面 検出器:NaIサーベイメーター(TCS-171,SN:203A5486+202Y3732(制御室常備品)) 単位:µSv/h(BG込み)

4月6日LaBr3検出器によるスペクトル測定結果

測定	同定	線量率変化(µSv/h)	線量率
場所	核種	4月4日→4月6日	減衰
 (1) (2) (3) (4) (5) ▲ 	Ni-57?	$7.4 \rightarrow 2.3$	1/3.2
	Ni-57, Cr-51	$3.2 \rightarrow 0.9$	1/3.6
	Ni-57, Cr-51	$0.32 \rightarrow 0.19$	1/1.7
	Ni-57, Cr-51	$0.9 \rightarrow 0.35$	1/2.6
	Cu-64, Ni-57, Cr-51	$14 \rightarrow 2.0$	1/7.0
ー ビームラインサ	ナーベイ結果のページに場所の情報有	4月6日時点での放射	化残留核種はNi-

核種	半減期	2日での減衰
Cu-64	12.7 h	1/14
Ni-57	36.0 h	1/2.5
Cr-51	27.7 d	1/1.1

4月6日時点での放射化残留核種はNi-57と Cr-51である。よって、ダクトが放射化している。

4月4日から4月6日にかけての線量率の減衰 について、コリメータ以外はNi-57の減衰でおお よそ説明できる。

コリメータについては、4月4日当時、Cu-64 の寄与が大きい。銅コリメータが放射化している。

ビームロスの見積もりのための MARS15シミュレーション

- 天井上線量率からビームロスを見積もる -

Ver. 1 (2015.4.21 updated)

放射線科学センター 松村

CAL01: BMIL04ビームロスによる天井上線量率計算
 CAL02: QMIM07ビームロスによる天井上線量率計算
 CAL03: QMIM01ビームロスによる天井上線量率計算
 CAL04: QMIL03ビームロスによる天井上線量率計算
 CAL05: COL03ビームロスによる天井上線量率計算
 CAL06: BMIL01ビームロスによる天井上線量率計算

MARS15計算条件

CAL01:BMIL04でのビームロスによる天井上光子線量率

ビームロス: BMIL04の真ん中でダクト上部に角度1度で入射。

10

 10^{2}

10

ビームロス見積もり結果

MARS15による天井上最大光子線量率と サーベイによる実測線量率との比較による ビームロスの見積もり結果

	MARS15計算		2015.4.2実測				2015.4.3実測			
ビームロスポイント	計算名	天井上線量	サーベイ結果	ビーム電流	ビームロス	ビームロス割合	サーベイ結果	ビーム電流	ビームロス	ビームロス割合
		(µSv/h/nA)	(µSv/h)	(µA)	(nA)	(%)	(µSv/h)	(µA)	(nA)	(%)
BMIL04	CAL01	0.020	BG	80	ND	ND	2.2	80	110	0.14
QMIM07	CAL02	0.026	0.10	80	4	0.005	0.8	80	31	0.038
QMIM01	CAL03	0.052	0.14	80	3	0.003	0.40	80	7.7	0.010
QMIL03	CAL04	0.027	BG	80	ND	ND	2.0	80	74	0.093
COL03	CAL05	0.088	25	80	284	0.36	0.75	80	8.5	0.011

天井上光子線量率は、電磁石中心でダクト上部に1度の角度でビームロスをすると、おおよそ0.03µSv/h/nA-ビームロス。 天井上のサーベイ時にざっくりとしたビームロス見積もりに使える。

南直線部の周長補正シケイン上部で4月2日の天井上サーベイで線量がなかったことは、金放射化のデータと合わない。 ビームラインサーベイでも高放射化が見つかっている。運転中サーベイで高線量部の見落としをしたか、ビームロスの場所設定 が良くない(他のシケインでロス)可能性がある。

ビームロスまとめ

