LCS付近のQscanについて

ビームダイナミクスWG 2014年11月12日 島田 美帆、中村 典雄

Q scanによるtwiss parameterの測定

測定日(6/5)	βx [m]	αχ	ɛnx [mm-mrad]	βy [m]	αγ	εny [mm-mrad]
データ1	6.3	-11	1.4	6	24	1.3
データ2	6.6	-11	1.5	6.3	26	1.3
デザイン値 (QMLC04直前)	55	-86		41	120	

データ2:フィッティングの範囲を狭くしたもの(水平方向:2.7~3.1 m⁻¹, 垂直方向:-3.2 ~-2.7 m⁻¹)

この手法はQの薄レンズ近似が成り立つために、K値[m-1]が5より十分小さい必要があるが。。 表の結果は信用できないと思われる。

本田さんの推定では、最小値からもっと離れた個所のデータを使用 ***

• K値が大きいが、薄レンズ近似をしている。

(QMLC04直前)

- •極端に離れているデータ、rmsビームサイズが2pixel以下のデータを消去。
- •K値を変えた直後の2点のデータは削除。

LCS付近のQ scanの応答

QMLC01-QMLC04をLCS opticsに励磁した状態でQ scanを行った時の応答を調べる スクリーン上のビームサイズ(oxおよびoy)とQのK値の関係を2つの計算①と②で比較

- ① 厚レンズモデル
 - すべて厚レンズで計算
 - コードはelegantを使用
 - TrackingはLCS直前から行ったため、emittance growth はなし。粒子数は1e5

② 薄レンズモデル

- Q scanを実施する四極電磁石は薄レンズモデル
- 転送行列Sはelegantで計算
 - 厚レンズモデル、長さ $L_Q/2$ のドリフトを含む
- 計算の条件
 - 全エネルギー 20 MeV
 - 規格化エミッタンス 0.3 mm-mrad

結果

Thick lensの計算結果とずれており、Thin lens近似が成り立たないことがわかる。