主空洞フィールド・エミッション電子 の損失シミュレーション

オリガ コンスタンティノワ 中村 典雄 梅森 健成 エンリコ チェンニ

ビームダイナミクス打ち合わせ 09/03(水)14:00

Contents

- はじめのコメント
- Field emission issues*Cenniさんの計算方法
- シミュレーションについて
 - ・シミューレションの方法
 - Simulation background
 - Input distribution generation
- トラッキング結果:順方向
- トラッキング結果: 逆方向
- ・まとめ
- その後の計算について

はじめのコメント

- cERLのコミッショニングの時に主空洞から
 フィールド・エミッションが1つの問題となった。
- その後の運転でフィールド・エミッションのレベ ルが上昇することが起きた。
- この計算の目的はビームダイナミックスを考えながら、フィールド・エミッションの損失点と 損失電流を評価することである。その最初の ステップはシミュレーション方法を決めること である。

Field emission issues*

*Cenniさんの計算方法

Field emission p	arameters
Acceleration field	15 MV/m
Surface field peak	45 MV/m
Aperture	40 mm
Enhancement parameter	100
Emission area size	8·10 ⁻¹³ m ²
Emitted electron energy	0.27~28.41 MeV
Emitted current	0.56~957.04 nA
Time interval	±3 ps
Number of emitters	8
Number of electrons	1181
Beam momentum	39.14

頂いたInput dataは フィールド・エミッション が空洞の右側(LBP)ま で飛んでいます

52

E. Cenni, KEK, 2012

ビームダイナミクス打ち合わせ

第1回のアイリスの周りエミッタの場所

Black dots are trajectories that reach cavity right end (LBP) Red dots are trajectories that reach cavity left end (SBP)

平成26年 9月 4日

Simulation workflow

- Upload the data, obtained by Dr. Cenni (MATLAB code)
- Generate input distribution for ELEGANT (*.bin file)
- Modify the lattice file to make use of the symplectic integration elements (ELEGANT code)
- Prepare the beam lines for upstream and downstream tracking
- Tracking (ELEGANT)
- Post processing (MATLAB)

Simulation background

Beam parameters	Simulation	cERL目的(実際の状態)
Maximum energy	20 MeV	20 MeV
Total beam current	10 mA	10 – 100 mA (10mA)
Repetition	1.3 GHz	1.3 GHz
Charge per bunch	7.7 pC	7.7 – 77 pC (20fC~20pC)
Norm. beam emittance	1 mm∙mrad	0.1 – 1.0 mm·mrad
Rms momentum spread	1·10 ⁻³	< 3.10-4
Bunch length	2 ps	1–3 ps

- drift space EDRIFT
- CSBEND bending magnet
- KQUAD quadruple magnet

```
sextuple magnet
   KSEXT
平成26年9月4日
```

```
ビームダイナミクス打ち合わせ
```

順方向ラティス

逆方向ラティス

Input distribution generation

0.02

0.015

0.01

0.005

-0.01

-0.015

-0.02

- Output distribution file contains (x, y, xp, yp, t, p) rows
- Distribution is flat
- X, [m] data obtained from "Pos [cm]" row
- > Y, [m] data obtained accordingly: Y = -0.36*X
- > XP, YP [rad] data obtained from "Impact angle" row: $XP = X/Z = tan(\theta)^* cos(\phi); YP = Y/Z = tan(\theta)^* sin(\phi)$
- T is generated using random numbers (± 3ps interval)
- P=βν data obtained from "Impact energy" row

Input data example

平成26年9月4日

	А	В	C D		E	F	
1	Eacc [MV/m]	Pos [cm]	Energy [eV]	Impact angle	Emitter #	Current [A]	
2	15	3.855774	14462376	88.68907397	45	9.36E-07	
3	15	-0.67846	9458630.1	89.98662203	45	9.56E-07	
4	15	0.965443	12602679	89.58966307	45	9.57E-07	
5	15	3.191616	136568.26	84.07941156	45	9.45E-07	
6	15	2.30708	460075.68	85.57512426	45	9.44E-07	
7	15	1.787438	809623.77	85.72269598	45	9.43E-07	
8	15	1.292157	1132710.3	86.15615441	45	9.41E-07	
9	15	0.868967	1431180.6	86.60263099	45	9.40E-07	
10	15	0.509513	1709340.4	87.00980081	45	9.38E-07	
11	15	0.205506	1969520.1	87.36752111	45	9.37E-07	
12	15	-0.05453	2214373.6	87.68124989	45	9.36E-07	

Output data example (*.bin file)

idescription text="phase space", contents="phase space ścolumn name=xp, symbol=x", type=double, śend ścolumn name=xp, symbol=x", type=double, śend ścolumn name=yp, symbol=y", type=double, śend ścolumn name=yp, symbol=y", type=double, śend ścolumn name=p, units=s, type=double, śend ścolumn name=p, units="m\$be\$nc", type=double, śend ścdata

mode=ascii &end 1181

0.038558 0.009339 -0.013881-0.0138812.407291e-12 2.830211e+07 -0.006785 -0.000095 0.002442 0.002442 -2.997806e-12 1.851004e+07 0.009654 0.002923 -0.003476 -0.003476 -1.003199e-13 2.466278e+07 0.031916 0.042319 -0.011490-0.011490-2.115152e-12 2.672569e+05 0 023071 0 031579 -0 008305 -0.008305 9 003438++05 -1 110047--12

トラッキング結果:順方向

ELEGANT output data example

Emitter #46, n simulated = 293

Printout for SDD	S file FEtest1.1	ost					
x	xp	У	ур	3	n a	particleID	Pass
m		m		m	m\$be\$nc		
-4.446047e-001	-1.000472e+000	-4.073155e-003	-7.581885e-004	1.874165e+001	1.013565e+0	07 28	
-4.422644e-001	-1.000274e+000	1.821566e-004	-4.469417e-004	1.874165e+001	1.039212e+00	7 29	
-2.371698e-002	-4.899488e-004	-8.021044e-003	-1.096008e-003	1.301625e+001	1.064820e+0	07 30	
-2.339339e-002	-6.500065e-004	-9.023575e-003	-1.453988e-003	1.033625e+001	9.870259e+0	06 27	
-2.387078e-002	-8.129544e-004	-7.992603e-003	-1.819010e-003	7.856248e+000	1.089638e+0	07 31	
-2.333405e-002	-1.092014e-003	-9.679284e-003	-2.442985e-003	6.376248e+000	9.598289e+0	06 26	
-2.400680e-002	-1.109973e-003	-8.009253e-003	-2.484001e-003	5.776248e+000	1.113913e+0	07 32	
-2.388558e-002	-1.381973e-003	-7.530993e-003	-3.091002e-003	4.496248e+000	1.137676e+0	07 33	
-2.310004e-002	-1.576968e-003	-1.009765e-002	-3.529006e-003	4.496248e+000	9.319668e+0	06 25	
-2.388998e-002	-1.629995e-003	-7.423655e-003	-3.646997e-003	3.786248e+000	1.160996e+0	07 34	
-2.423442e-002	-1.861995e-003	-8.131581e-003	-4.166996e-003	3.486248e+000	1.183857e+0	07 35	
-2.498462e-002	-2.076995e-003	-9.800734e-003	-4.645996e-003	3.486248e+000	1.206284e+0	07 36	
-2.564810e-002	-2.273995e-003	-1.134547e-002	-5.086996e-003	3.486248e+000	1.228344e+0	07 37	

12

10

各エミッターの損失分布

FORWARD

•The difference in energy is due to the electrons flight path and electric field phase •The electrons can be accelerated or decelerated due to the electric field

orientation while they are passing through each cavity cell

ビームダイナミクス打ち合わせ

45

損失したFE電子の分布

FORWARD

• Output file $\sigma S \vec{\tau} - \phi - S$ [smin, smax] - S Divide into same intervals - S Calculate number of particles in each interval - S Plot (MATLAB)

10

Lost currentの測定

FORWARD

CenniさんのFE Currentデータ * Number of particles in each interval ー>
 ー> Plot 対Output fileのSデータ (MATLAB)

Same scale! 12E+7 pA/m

トラッキング結果:逆方向

各エミッターの損失分布

BACK

The difference in energy is due to the electrons flight path and electric field phase
The electrons can be accelerated or decelerated due to the electric field orientation while they are passing through each cavity cell

13

45

平成26年 9月 4日

ビームダイナミクス打ち合わせ

損失したFE電子の分布

BACK

Output fileのSデーター> [smin, smax] -> Divide into same intervals -> Calculate number of particles in each interval -> Plot (MATLAB)

Lost currentの測定

BACK

CenniさんのFE Currentデータ * Number of particles in each interval ->
 Plot 対Output fileのSデータ (MATLAB)

Same scale! 12E+7 pA/m

Lost currentのまとめ

	WITH PEAK		Emitter#45	Emitter#46	Emitter#47	Emitter#48	Emitter#49	Emitter#50	Emitter#51	Emitter#52
	forward	peak, [pA/m]	4.86E+07	1.27E+08	3.82E+07	7 1.17E+07	2.21E+06	6.76E+05	5 2.19E+05	9.56E+04
		average, [pA/m]	1.06E+07	5.78E+07	7 1.44E+07	4.19E+06	5 7.45E+05	2.34E+05	5 7.46E+04	3.10E+04
	back	peak, [pA/m]	4.86E+07	1.27E+08	3.82E+07	7 1.17E+07	2.21E+06	6.76E+05	5 2.19E+05	9.56E+04
		average, [pA/m]	2.03E+07	3.05E+07	7.69E+06	5 2.30E+06	6 4.36E+05	1.38E+05	5 4.57E+04	2.02E+04
	Emits back more then forward!									
N	NO PEAK		Emitter#45 E	mitter#46 E	Emitter#47 E	Emitter#48 E	Emitter#49 E	mitter#50 E	Emitter#51 E	Emitter#52
f	orward	peak, [pA/m]	1.67E+06	8.82E+06	1.72E+06	5.10E+05	1.35E+05	4.34E+04	1.93E+04	1.18E+04
		average, [pA/m]	2.85E+05	9.71E+06	1.87E+06	5.24E+05	9.90E+04	3.50E+04	1.52E+04	6.39E+03
b	back	peak, [pA/m]	1.14E+07	2.13E+06	4.62E+05	1.32E+05	3.53E+04	1.22E+04	5.25E+03	4.66E+03
	;	average, [pA/m]	1.09E+07	1.96E+06	3.99E+05	1.12E+05	2.53E+04	9.72E+03	4.73E+03	3.05E+03

まとめ

- 放出された電子の大部分は空洞の出口から約2.5 m で始まるダンプシケインで失われ、生き残った電子も 空洞の出口から18.7 m離れた偏向電磁石#1までに 完全に失われた。
- 一方、逆方向に伝播するFE電子は、全て空洞の入口 から7.1 m離れている入射シケインで失われた。
- FEのシミュレーション結果が出来ているが、実際の cERLの実験状態とまだ比べにくい。その理由:
 - 空洞の2台の測定は必要である。
 - FEの時間に対した空洞の位相結果がまだ足りない。
- それで、シミュレーション結果より、シミュレーションの 方法の確認が出来た。

今後の課題

- Cenniさんに09/01FEの時間に対した空洞の 位相を含まれているデータを受け取ったー> シミュレーションの修正が可能
- 空洞の2台の計算のため、CST Studio suitへ
 実際の空洞のデザインを入れて、確認を行う。
- ・エミッターAを含む測定
- FE issuesを理解するため、コードを使って Phase scan, Energy scan

Acknowledges

- 測定の準備、測定中のcross-check、色々なアドバイスを中村さん に感謝します
- 測定のため大事なInputデータの生成、説明、測定のアドバイスを Cenniさんに感謝します
- 空洞の物理の説明、CST Studio suitの使い方の手伝いといろいろ な大事なアドバイスを梅森さんに感謝します

御清聴をどうもありがとうございます!

ビームダイナミクス打ち合わせ